Feature-based Approaches for Ethical News Personalisation

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.advisorWestrup, Clemens
dc.contributor.authorBarcsa-Szabó, Áron Csongor
dc.contributor.schoolPerustieteiden korkeakoulufi
dc.contributor.supervisorJung, Alexander
dc.date.accessioned2022-09-04T17:00:14Z
dc.date.available2022-09-04T17:00:14Z
dc.date.issued2022-08-22
dc.description.abstractIn recent years, the automation and optimization of content personalisation has become widespread in online mediums. Such recommendation approaches — recommender systems — create increased value to businesses through optimizing business objectives, while providing more accurate suggestions to users, increasing customer satisfaction. In contrast to usual approaches, when considering the automation of news personalisation, ethical journalistic responsibilities have to be taken into account alongside business and user objectives. This thesis evaluates an industry recommender system of a Finnish Media company and describes a novel interpretable model for improving its performance. These improvements are evaluated theoretically and experimentally, showing the marked increase in performance through leveraging previously unused latent information.en
dc.format.extent59
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/116478
dc.identifier.urnURN:NBN:fi:aalto-202209045289
dc.language.isoenen
dc.programmeMaster's Programme in ICT Innovationfi
dc.programme.majorData Sciencefi
dc.programme.mcodeSCI3115fi
dc.subject.keywordrecommender systemsen
dc.subject.keywordCTRen
dc.subject.keywordinterpretable MLen
dc.subject.keywordregression-based latent factor modelsen
dc.subject.keywordfeature-based methodsen
dc.titleFeature-based Approaches for Ethical News Personalisationen
dc.typeG2 Pro gradu, diplomityöfi
dc.type.ontasotMaster's thesisen
dc.type.ontasotDiplomityöfi
local.aalto.electroniconlyyes
local.aalto.openaccessno

Files