Enabling wireless sensors localization in dynamic indoor environments
No Thumbnail Available
URL
Journal Title
Journal ISSN
Volume Title
Elektroniikan, tietoliikenteen ja automaation tiedekunta |
Master's thesis
Unless otherwise stated, all rights belong to the author. You may download, display and print this publication for Your own personal use. Commercial use is prohibited.
Authors
Date
2010
Department
Major/Subject
Tietoliikennetekniikka
Mcode
S-72
Degree programme
Language
en
Pages
66 + [33]
Series
Abstract
Wireless sensors networks localization is an important area that attracts significant research interest. Localization is a fundamental problem that must be solved in order to support location-aware applications. The growing demand of location-aware applications requires the development of application-oriented localization solutions with appropriate trade offs between accuracy and costs. The present thesis seeks to enhance the performance of simple and low-cost propagation based localization solutions in dynamic indoor environments. First, an overview of the different approaches in wireless sensors networks localization is provided. Next, sources of received signal strength variability are investigated. Then, the problems of the distance-dependant path loss estimation caused by the radio channel of dynamic indoor situations are empirically analyzed. Based on these previous theoretical and empirical analysis, the solution uses spatial and frequency diversity techniques, in addition to time diversity, in order to create a better estimator of the distance-dependent path loss by counteracting the random multipath effect. Furthermore, the solution attempts to account for the random shadow fading by using "shadowing-independent" path loss estimations in order to deduce distances. In order to find the unknown sensor's positions based on the distance estimates, the solution implements a weighted least-squares algorithm that reduces the impact of the distance estimates errors in the location estimate.Description
Supervisor
Jäntti, RikuThesis advisor
Nethi, ShekarKeywords
localization, path loss, received signal strength, wireless sensors networks, multipath effect, shadow fading, optimization, range