Searching for iron nanoparticles with a general-purpose Gaussian approximation potential

Loading...
Thumbnail Image

Access rights

openAccess

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2023-06-15

Major/Subject

Mcode

Degree programme

Language

en

Pages

17

Series

Physical Review B, Volume 107, issue 24

Abstract

We present a general-purpose machine learning Gaussian approximation potential (GAP) for iron that is applicable to all bulk crystal structures found experimentally under diverse thermodynamic conditions, as well as surfaces and nanoparticles (NPs). By studying its phase diagram, we show that our GAP remains stable at extreme conditions, including those found in the Earth's core. The new GAP is particularly accurate for the description of NPs. We use it to identify new low-energy NPs, whose stability is verified by performing density functional theory calculations on the GAP structures. Many of these NPs are lower in energy than those previously available in the literature up to Natoms = 100. We further extend the convex hull of available stable structures to Natoms = 200. For these NPs, we study characteristic surface atomic motifs using data clustering and low-dimensional embedding techniques. With a few exceptions, e.g., at magic numbers Natoms = 59, 65, 76, and 78, we find that iron tends to form irregularly shaped NPs without a dominant surface character or characteristic atomic motif, and no reminiscence of crystalline features. We hypothesize that the observed disorder stems from an intricate balance and competition between the stable bulk motif formation, with bcc structure, and the stable surface motif formation, with fcc structure. We expect these results to improve our understanding of the fundamental properties and structure of low-dimensional forms of iron and to facilitate future work in the field of iron-based catalysis.

Description

Funding Information: The authors are grateful to the Academy of Finland for financial support under projects No. 321713 (R.J. and M.A.C.) and No. 330488 (M.A.C.), and CSC–IT Center for Science as well as Aalto University's Science-IT Project for computational resources. Publisher Copyright: © 2023 American Physical Society.

Keywords

Other note

Citation

Jana, R & Caro, M A 2023, ' Searching for iron nanoparticles with a general-purpose Gaussian approximation potential ', Physical Review B, vol. 107, no. 24, 245421 . https://doi.org/10.1103/PhysRevB.107.245421