Multi-robot formations for area coverage in space applications

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.advisorNakasuka, Shinichi
dc.contributor.advisorTaipalus, Tapio
dc.contributor.authorLeitner, Jürgen
dc.contributor.departmentAutomaatio- ja systeemitekniikan laitosfi
dc.contributor.supervisorHalme, Aarne
dc.contributor.supervisorHyyppä, Kalevi
dc.date.accessioned2012-03-06T13:34:12Z
dc.date.available2012-03-06T13:34:12Z
dc.date.issued2009
dc.description.abstractThis thesis presents two algorithmic implementations of multi-robot formation control for the area coverage problem. It uses a space exploration scenario, with a marsupial robot society, for tasks like mapping, habitat construction, etc. The solutions are though applicable to a wider range of applications, since area coverage is seen as one of the canonical problems in multi-robot application. Starting with an overview of multi-robot systems in space applications, both currently in use and planned for the near future, it then presents the two algorithms and their implementation in C++: (i) a vector force based implementation and (ii) a machine learning approach. The second is based on an organizational-learning oriented classifier system (OCS) introduced by Takadama an evolution of Holland's learning classifier system (LCS). To ease the development, testing and evaluation of the control algorithms a simulator, named SMRTCTRL, was implemented during a 3 months research stay at the University of Tokyo. The vector-based control approach was tested using a multi-robot society of LEGO Mindstorms Robots and a comparison of the two algorithm was done with the help of the simulator.en
dc.format.extent99
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/3053
dc.identifier.urnURN:NBN:fi:aalto-201203071284
dc.language.isoenen
dc.locationP1fi
dc.programme.majorAutomaatiotekniikkafi
dc.programme.mcodeAut-84
dc.publisherHelsinki University of Technologyen
dc.publisherTeknillinen korkeakoulufi
dc.rights.accesslevelopenAccess
dc.subject.keywordspace roboticsen
dc.subject.keywordmulti-robot cooperationen
dc.subject.keywordarea coverageen
dc.subject.keywordmachine learningen
dc.subject.keywordsimulationen
dc.subject.keywordformation controlen
dc.subject.keywordLearning Classifer Systemsen
dc.subject.keywordLCSen
dc.titleMulti-robot formations for area coverage in space applicationsen
dc.typeG2 Pro gradu, diplomityöfi
dc.type.dcmitypetexten
dc.type.okmG2 Pro gradu, diplomityö
dc.type.ontasotDiplomityöfi
dc.type.ontasotMaster's thesisen
dc.type.publicationmasterThesis
local.aalto.digifolderAalto_90721
local.aalto.idinssi38296
local.aalto.openaccessyes

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
urn100003.pdf
Size:
2.28 MB
Format:
Adobe Portable Document Format