Multi-robot formations for area coverage in space applications
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.advisor | Nakasuka, Shinichi | |
dc.contributor.advisor | Taipalus, Tapio | |
dc.contributor.author | Leitner, Jürgen | |
dc.contributor.department | Automaatio- ja systeemitekniikan laitos | fi |
dc.contributor.supervisor | Halme, Aarne | |
dc.contributor.supervisor | Hyyppä, Kalevi | |
dc.date.accessioned | 2012-03-06T13:34:12Z | |
dc.date.available | 2012-03-06T13:34:12Z | |
dc.date.issued | 2009 | |
dc.description.abstract | This thesis presents two algorithmic implementations of multi-robot formation control for the area coverage problem. It uses a space exploration scenario, with a marsupial robot society, for tasks like mapping, habitat construction, etc. The solutions are though applicable to a wider range of applications, since area coverage is seen as one of the canonical problems in multi-robot application. Starting with an overview of multi-robot systems in space applications, both currently in use and planned for the near future, it then presents the two algorithms and their implementation in C++: (i) a vector force based implementation and (ii) a machine learning approach. The second is based on an organizational-learning oriented classifier system (OCS) introduced by Takadama an evolution of Holland's learning classifier system (LCS). To ease the development, testing and evaluation of the control algorithms a simulator, named SMRTCTRL, was implemented during a 3 months research stay at the University of Tokyo. The vector-based control approach was tested using a multi-robot society of LEGO Mindstorms Robots and a comparison of the two algorithm was done with the help of the simulator. | en |
dc.format.extent | 99 | |
dc.format.mimetype | application/pdf | |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/3053 | |
dc.identifier.urn | URN:NBN:fi:aalto-201203071284 | |
dc.language.iso | en | en |
dc.location | P1 | fi |
dc.programme.major | Automaatiotekniikka | fi |
dc.programme.mcode | Aut-84 | |
dc.publisher | Helsinki University of Technology | en |
dc.publisher | Teknillinen korkeakoulu | fi |
dc.rights.accesslevel | openAccess | |
dc.subject.keyword | space robotics | en |
dc.subject.keyword | multi-robot cooperation | en |
dc.subject.keyword | area coverage | en |
dc.subject.keyword | machine learning | en |
dc.subject.keyword | simulation | en |
dc.subject.keyword | formation control | en |
dc.subject.keyword | Learning Classifer Systems | en |
dc.subject.keyword | LCS | en |
dc.title | Multi-robot formations for area coverage in space applications | en |
dc.type | G2 Pro gradu, diplomityö | fi |
dc.type.dcmitype | text | en |
dc.type.okm | G2 Pro gradu, diplomityö | |
dc.type.ontasot | Diplomityö | fi |
dc.type.ontasot | Master's thesis | en |
dc.type.publication | masterThesis | |
local.aalto.digifolder | Aalto_90721 | |
local.aalto.idinssi | 38296 | |
local.aalto.openaccess | yes |
Files
Original bundle
1 - 1 of 1