Dark Velvet Noise

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorFagerström, Jonen_US
dc.contributor.authorMeyer-Kahlen, Nilsen_US
dc.contributor.authorSchlecht, Sebastian J.en_US
dc.contributor.authorVälimäki, Vesaen_US
dc.contributor.departmentDepartment of Signal Processing and Acousticsen
dc.contributor.departmentDepartment of Art and Mediaen
dc.contributor.editorEvangelista, Gianpaoloen_US
dc.contributor.editorHolighaus, Nickien_US
dc.contributor.groupauthorAudio Signal Processingen
dc.contributor.groupauthorVirtual Acousticsen
dc.date.accessioned2022-10-19T06:44:07Z
dc.date.available2022-10-19T06:44:07Z
dc.date.issued2022en_US
dc.descriptionFunding Information: This research is part of the activities of the Nordic Sound and Music Computing Network— NordicSMC (NordForsk project no. 86892) and has received funding from the European Union Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement no. 812719. Funding Information: This research is part of the activities of the Nordic Sound and Music Computing Network- NordicSMC (NordForsk project no. 86892) and has received funding from the European Union Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement no. 812719. Publisher Copyright: Copyright: © 2022 Jon Fagerström et al.
dc.description.abstractThis paper proposes dark velvet noise (DVN) as an extension of the original velvet noise with a lowpass spectrum. The lowpass spectrum is achieved by allowing each pulse in the sparse sequence to have a randomized pulse width. The cutoff frequency is controlled by the density of the sequence. The modulated pulse-width can be implemented efficiently utilizing a discrete set of recursive running-sum filters, one for each unique pulse width. DVN may be used in reverberation algorithms. Typical room reverberation has a frequency-dependent decay, where the high frequencies decay faster than the low ones. A similar effect is achieved by lowering the density and increasing the pulse-width of DVN in time, thereby making the DVN suitable for artificial reverberation.en
dc.description.versionPeer revieweden
dc.format.extent8
dc.format.extent192-199
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationFagerström, J, Meyer-Kahlen, N, Schlecht, S J & Välimäki, V 2022, Dark Velvet Noise . in G Evangelista & N Holighaus (eds), Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22) . 2022 edn, 31, Proceedings of the International Conference on Digital Audio Effects, DAFx, Vienna, Austria, pp. 192-199, International Conference on Digital Audio Effects, Vienna, Austria, 07/09/2022 . < https://dafx2020.mdw.ac.at/proceedings/papers/DAFx20in22_paper_31.pdf >en
dc.identifier.isbn978-3-200-08599-2
dc.identifier.issn2413-6700
dc.identifier.issn2413-6689
dc.identifier.otherPURE UUID: 6cd8f34d-4830-4177-9d93-87c2be420223en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/6cd8f34d-4830-4177-9d93-87c2be420223en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85138821208&partnerID=8YFLogxKen_US
dc.identifier.otherPURE LINK: https://dafx2020.mdw.ac.at/proceedings/papers/DAFx20in22_paper_31.pdfen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/89271748/Fagerstr_m_et_alii_DARK_VELVET_NOISE.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/117224
dc.identifier.urnURN:NBN:fi:aalto-202210196012
dc.language.isoenen
dc.relation.ispartofInternational Conference on Digital Audio Effectsen
dc.relation.ispartofseriesProceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22)en
dc.relation.ispartofseriesissue 2022en
dc.relation.ispartofseriesProceedings of the International Conference on Digital Audio Effectsen
dc.rightsopenAccessen
dc.titleDark Velvet Noiseen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionpublishedVersion

Files