Supercaloric functions for the parabolic p-Laplace equation in the fast diffusion case

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorGiri, Ratan Kren_US
dc.contributor.authorKinnunen, Juhaen_US
dc.contributor.authorMoring, Kristianen_US
dc.contributor.departmentDepartment of Mathematics and Systems Analysisen
dc.contributor.groupauthorAnalysisen
dc.date.accessioned2021-06-02T06:15:09Z
dc.date.available2021-06-02T06:15:09Z
dc.date.issued2021-05en_US
dc.descriptionFunding Information: The authors would like to thank Peter Lindqvist for useful discussions and the Academy of Finland for support. K. Moring has also been supported by the Magnus Ehrnrooth Foundation. Funding Information: The authors would like to thank Peter Lindqvist for useful discussions and the Academy of Finland for support. K. Moring has also been supported by the Magnus Ehrnrooth Foundation. Publisher Copyright: © 2021, The Author(s). Copyright: Copyright 2021 Elsevier B.V., All rights reserved.
dc.description.abstractWe study a generalized class of supersolutions, so-called p-supercaloric functions, to the parabolic p-Laplace equation. This class of functions is defined as lower semicontinuous functions that are finite in a dense set and satisfy the parabolic comparison principle. Their properties are relatively well understood for p≥ 2 , but little is known in the fast diffusion case 1 < p< 2. Every bounded p-supercaloric function belongs to the natural Sobolev space and is a weak supersolution to the parabolic p-Laplace equation for the entire range 1 < p< ∞. Our main result shows that unbounded p-supercaloric functions are divided into two mutually exclusive classes with sharp local integrability estimates for the function and its weak gradient in the supercritical case 2nn+1<p<2. The Barenblatt solution and the infinite point source solution show that both alternatives occur. Barenblatt solutions do not exist in the subcritical case 1<p≤2nn+1 and the theory is not yet well understood.en
dc.description.versionPeer revieweden
dc.format.extent21
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationGiri, R K, Kinnunen, J & Moring, K 2021, ' Supercaloric functions for the parabolic p-Laplace equation in the fast diffusion case ', Nonlinear Differential Equations and Applications, vol. 28, no. 3, 33 . https://doi.org/10.1007/s00030-021-00694-8en
dc.identifier.doi10.1007/s00030-021-00694-8en_US
dc.identifier.issn1021-9722
dc.identifier.issn1420-9004
dc.identifier.otherPURE UUID: 4039ebb9-7efd-4279-8b91-321ba5085a01en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/4039ebb9-7efd-4279-8b91-321ba5085a01en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85104547093&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/63277604/Giri2021_Article_SuPercaloricFunctionsForThePar.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/107894
dc.identifier.urnURN:NBN:fi:aalto-202106027147
dc.language.isoenen
dc.publisherSPRINGER BASEL AG
dc.relation.ispartofseriesNonlinear Differential Equations and Applicationsen
dc.relation.ispartofseriesVolume 28, issue 3en
dc.rightsopenAccessen
dc.subject.keywordComparison principleen_US
dc.subject.keywordMoser iterationen_US
dc.subject.keywordObstacle problemen_US
dc.subject.keywordp-supercaloric functionen_US
dc.subject.keywordParabolic p-Laplace equationen_US
dc.titleSupercaloric functions for the parabolic p-Laplace equation in the fast diffusion caseen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files