Integration of Renewable Energy Sources into Power Grids Applying Distributed Virtual Inertia and Model Predictive Controls

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.advisorPouresmaeil, Edris, Assoc. Prof., Aalto University, Department of Electrical Engineering and Automation, Finland
dc.contributor.authorSaeedian, Meysam
dc.contributor.departmentSähkötekniikan ja automaation laitosfi
dc.contributor.departmentDepartment of Electrical Engineering and Automationen
dc.contributor.labRenewable Energies for Power Systems Groupen
dc.contributor.schoolSähkötekniikan korkeakoulufi
dc.contributor.schoolSchool of Electrical Engineeringen
dc.contributor.supervisorPouresmaeil, Edris, Assoc. Prof., Aalto University, Department of Electrical Engineering and Automation, Finland
dc.date.accessioned2022-12-30T10:00:09Z
dc.date.available2022-12-30T10:00:09Z
dc.date.defence2023-01-20
dc.date.issued2022
dc.description.abstractThe current energy arena is changing, from fossil fuel-based generation to power electronic converter-interfaced renewable generation. Hence, the power system inertia and short-circuit current gradually reduce, making low-inertia grids more sensitive to frequency disturbances (i.e., power mismatch between generation and demand) and jeopardizes system stability. This thesis develops control methods for grid-following and grid-forming converters employed toward more power electronic-based generators. The thesis contributions are divided into two main approaches.  First, the distributed virtual inertia method, a grid-following converter solution aimed at synthetic inertia provision, is studied in detail. It is depicted that this method has two drawbacks: (1) small-signal stability analyses affirm that a local mode associated with the controller is prone to become unstable when the converter operates in weak grids, and (2) the DC-link voltage is not reverted to its reference value after the power mismatch between generation and demand occurred in the host grid. Herein, the aforesaid problems are addressed properly; efficient compensators are proposed which eliminate the adverse impact of distributed virtual inertia gain on the converter stability in weak grid connections. Moreover, the distributed virtual inertia controller is modified so as not to affect the outer-loop voltage regulator after transients. Then, the DC voltage restoration is possible.  Second, the conventional primary control, i.e., inner-loop cascaded linear controller and outer-loop droop, used in islanded AC microgrids is discussed. In sum, this approach has inferior dynamic response and rapid rate of change of frequency following perturbations. Accordingly, the thesis addresses these issues by introducing a modified virtual synchronous generator control. A Laguerre functions-based discrete-time model predictive controller with a multiobjective cost function is incorporated as the heart of the control system which supersedes the inner loop for hierarchical linear controllers of grid-forming converters. This yields realizing large prediction horizons, improved dynamic performance (very short rise time and slight overshoot), and inherent overcurrent protection in the case of fault or overloading without sacrificing the controller robustness. Finally, the merits of proposed techniques are verified by comparisons with corresponding primary methods. And, detailed model simulations are conducted in MATLAB/Simulink to show the efficacy of the proposed controllers.en
dc.format.extent80 + app. 84
dc.format.mimetypeapplication/pdfen
dc.identifier.isbn978-952-64-1065-4 (electronic)
dc.identifier.isbn978-952-64-1064-7 (printed)
dc.identifier.issn1799-4942 (electronic)
dc.identifier.issn1799-4934 (printed)
dc.identifier.issn1799-4934 (ISSN-L)
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/118635
dc.identifier.urnURN:ISBN:978-952-64-1065-4
dc.language.isoenen
dc.opnMattavelli, Paolo, Prof., University of Padova, Italy
dc.publisherAalto Universityen
dc.publisherAalto-yliopistofi
dc.relation.haspart[Publication 1]: Meysam Saeedian, Mobina Pouresmaeil, Amir Sepehr, Shamsodin Taheri, and Edris Pouresmaeil. Small−Signal Stability Analysis of Synthetic Inertia−Based Photovoltaic Generators. In 2021 23rd European Conference on Power Electronics and Applications (EPE’21 ECCE Europe), pp. 1-8, September 2021. Full text in Acris/Aaltodoc: http://urn.fi/URN:NBN:fi:aalto-202111019865.
dc.relation.haspart[Publication 2]: Meysam Saeedian, Bahman Eskandari, Shamsodin Taheri, Marko Hinkkanen, and Edris Pouresmaeil. A Control Technique Based on Distributed Virtual Inertia for High Penetration of Renewable Energies Under Weak Grid Conditions. IEEE Systems Journal, vol. 15, no. 2, pp. 1825-1834, June 2021. Full text in Acris/Aaltodoc: http://urn.fi/URN:NBN:fi:aalto-202008214779. DOI: 10.1109/JSYST.2020.2997392
dc.relation.haspart[Publication 3]: Meysam Saeedian, Bahram Pournazarian, Bahman Eskandari, Mahdi Shahparasti, and Edris Pouresmaeil. Enhancing Frequency Stability of Weak Grids with Modified Distributed Virtual Inertia Method. In 2020 IEEE 11th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Dubrovnik, Croatia, pp. 187-192, September/October 2020. Full text in Acris/Aaltodoc: http://urn.fi/URN:NBN:fi:aalto-2020113020564. DOI: 10.1109/PEDG48541.2020.9244475
dc.relation.haspart[Publication 4]: Meysam Saeedian, Reza Sangrody, Mahdi Shahparasti, Shamsodin Taheri, and Edris Pouresmaeil. Grid−Following DVI−Based Converter Operating in Weak Grids for Enhancing Frequency Stability. IEEE Transactions on Power Delivery, vol. 37, no. 1, pp. 338-348, February 2022. Full text in Acris/Aaltodoc: http://urn.fi/URN:NBN:fi:aalto-202102262020. DOI: 10.1109/TPWRD.2021.3059898
dc.relation.haspart[Publication 5]: Meysam Saeedian, Bahram Pournazarian, Shamsodin Taheri, and Edris Pouresmaeil. Provision of Synthetic Inertia Support for Converter Dominated Weak Grids. IEEE Systems Journal, vol. 16, no. 2, pp. 2068-2077, June 2022. Full text in Acris/Aaltodoc: http://urn.fi/URN:NBN:fi:aalto-202103312710. DOI: 10.1109/JSYST.2021.3060866
dc.relation.haspart[Publication 6]: Meysam Saeedian, Shamsodin Taheri, and Edris Pouresmaeil. Double-Stage Photovoltaic Generator Augmented with FLL−Based Synthetic Inertia Emulator. Electric Power Systems Research, vol. 204, pp. 107715, March 2022. Full text in Acris/Aaltodoc: http://urn.fi/URN:NBN:fi:aalto-2021123111102. DOI: 10.1016/j.epsr.2021.107715
dc.relation.haspart[Publication 7]: Meysam Saeedian, Oriol Gomis-Bellmunt, and Edris Pouresmaeil. Multiobjective Laguerre Functions−Based Discrete−Time Model Predictive Control: A Fast Inner−Loop Controller for Grid−Forming Converters. Electric Power Systems Research, vol. 209, pp. 107976, August 2022. Full text in Acris/Aaltodoc: http://urn.fi/URN:NBN:fi:aalto-202204282907. DOI: 10.1016/j.epsr.2022.107976
dc.relation.ispartofseriesAalto University publication series DOCTORAL THESESen
dc.relation.ispartofseries190/2022
dc.revVazquez Perez, Sergio, Assoc. Prof., University of Seville, Spain
dc.revRueda Torres, Jose, Assoc. Prof., Delft University of Technology, Netherlands
dc.subject.keywordrenewable energyen
dc.subject.keywordprimary frequency regulationen
dc.subject.keywordweak griden
dc.subject.keywordAC microgriden
dc.subject.keywordvirtual inertiaen
dc.subject.keywordmodel predictive controlen
dc.subject.keywordovercurrent protectionen
dc.subject.otherElectrical engineeringen
dc.titleIntegration of Renewable Energy Sources into Power Grids Applying Distributed Virtual Inertia and Model Predictive Controlsen
dc.typeG5 Artikkeliväitöskirjafi
dc.type.dcmitypetexten
dc.type.ontasotDoctoral dissertation (article-based)en
dc.type.ontasotVäitöskirja (artikkeli)fi
local.aalto.acrisexportstatuschecked 2023-01-23_0929
local.aalto.archiveyes
local.aalto.formfolder2022_12_29_klo_12_21

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
isbn9789526410654.pdf
Size:
4.92 MB
Format:
Adobe Portable Document Format