Guitar tone stack modeling with a neural state-space filter

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorSinjanakhom, Tantepen_US
dc.contributor.authorDamskägg, Eero-Pekkaen_US
dc.contributor.authorMimilakis, Stylianosen_US
dc.contributor.authorGotsopoulos, Athanasiosen_US
dc.contributor.authorVälimäki, Vesaen_US
dc.contributor.departmentDepartment of Information and Communications Engineeringen
dc.contributor.editorDe Sena, E.en_US
dc.contributor.editorMannall, J.en_US
dc.contributor.groupauthorAudio Signal Processingen
dc.contributor.organizationNeural DSP Technologiesen_US
dc.contributor.organizationComplex Root Audioen_US
dc.date.accessioned2024-10-04T09:01:59Z
dc.date.available2024-10-04T09:01:59Z
dc.date.issued2024-09-03en_US
dc.description.abstractIn this work, we present a data-driven approach to modeling tone stack circuits in guitar amplifiers and distortion pedals. To this aim, the proposed modeling approach uses a feedforward fully connected neural network to predict the parameters of a coupled-form state-space filter, ensuring the numerical stability of the resulting time-varying system. The neural network is conditioned on the tone controls of the target tone stack and is optimized jointly with the coupled-form state-space filter to match the target frequency response. To assess the proposed approach, we model three popular tone stack schematics with both matched-order and over-parameterized filters and conduct an objective comparison with well-established approaches that use cascaded biquad filters. Results from the conducted experiments demonstrate improved accuracy of the proposed modeling approach, especially in the case of over-parameterized state-space filters while guaranteeing numerical stability. Our method can be deployed, after training, in real-time audio processors.en
dc.description.versionPeer revieweden
dc.format.extent176
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationSinjanakhom, T, Damskägg, E-P, Mimilakis, S, Gotsopoulos, A & Välimäki, V 2024, Guitar tone stack modeling with a neural state-space filter . in E De Sena & J Mannall (eds), Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24) . 2024 edn, vol. 27, 58, Proceedings of the International Conference on Digital Audio Effects, University of Surrey, Guildford, UK, pp. 171-176, International Conference on Digital Audio Effects, Guildford, United Kingdom, 03/09/2024 . < https://www.dafx.de/paper-archive/2024/papers/DAFx24_paper_58.pdf >en
dc.identifier.issn2413-6689
dc.identifier.otherPURE UUID: b790efd1-457b-42ae-a253-f1f49e9d20f0en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/b790efd1-457b-42ae-a253-f1f49e9d20f0en_US
dc.identifier.otherPURE LINK: https://www.dafx.de/paper-archive/en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85210256397&partnerID=8YFLogxKen_US
dc.identifier.otherPURE LINK: https://www.dafx.de/paper-archive/2024/papers/DAFx24_paper_58.pdfen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/159508401/DAFx24_paper_58.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/131099
dc.identifier.urnURN:NBN:fi:aalto-202410046635
dc.language.isoenen
dc.relation.ispartofProceedings of the 27th International Conference on Digital Audio Effects (DAFx24)
dc.relation.ispartofVolume 27, issue 2024, pp. 171
dc.relation.ispartofInternational Conference on Digital Audio Effectsen
dc.relation.ispartofseriesProceedings of the International Conference on Digital Audio Effectsen
dc.rightsopenAccessen
dc.rights.copyrightCreative Commons Attribution 4.0 International Licenseen_US
dc.subject.keywordAudio signal processingen_US
dc.subject.keywordanalog circuitsen_US
dc.subject.keywordDigital signal processingen_US
dc.subject.keywordMachine learningen_US
dc.titleGuitar tone stack modeling with a neural state-space filteren
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionpublishedVersion

Files