Guitar tone stack modeling with a neural state-space filter
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Sinjanakhom, Tantep | en_US |
dc.contributor.author | Damskägg, Eero-Pekka | en_US |
dc.contributor.author | Mimilakis, Stylianos | en_US |
dc.contributor.author | Gotsopoulos, Athanasios | en_US |
dc.contributor.author | Välimäki, Vesa | en_US |
dc.contributor.department | Department of Information and Communications Engineering | en |
dc.contributor.editor | De Sena, E. | en_US |
dc.contributor.editor | Mannall, J. | en_US |
dc.contributor.groupauthor | Audio Signal Processing | en |
dc.contributor.organization | Neural DSP Technologies | en_US |
dc.contributor.organization | Complex Root Audio | en_US |
dc.date.accessioned | 2024-10-04T09:01:59Z | |
dc.date.available | 2024-10-04T09:01:59Z | |
dc.date.issued | 2024-09-03 | en_US |
dc.description.abstract | In this work, we present a data-driven approach to modeling tone stack circuits in guitar amplifiers and distortion pedals. To this aim, the proposed modeling approach uses a feedforward fully connected neural network to predict the parameters of a coupled-form state-space filter, ensuring the numerical stability of the resulting time-varying system. The neural network is conditioned on the tone controls of the target tone stack and is optimized jointly with the coupled-form state-space filter to match the target frequency response. To assess the proposed approach, we model three popular tone stack schematics with both matched-order and over-parameterized filters and conduct an objective comparison with well-established approaches that use cascaded biquad filters. Results from the conducted experiments demonstrate improved accuracy of the proposed modeling approach, especially in the case of over-parameterized state-space filters while guaranteeing numerical stability. Our method can be deployed, after training, in real-time audio processors. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 176 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Sinjanakhom, T, Damskägg, E-P, Mimilakis, S, Gotsopoulos, A & Välimäki, V 2024, Guitar tone stack modeling with a neural state-space filter . in E De Sena & J Mannall (eds), Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24) . 2024 edn, vol. 27, 58, Proceedings of the International Conference on Digital Audio Effects, University of Surrey, Guildford, UK, pp. 171-176, International Conference on Digital Audio Effects, Guildford, United Kingdom, 03/09/2024 . < https://www.dafx.de/paper-archive/2024/papers/DAFx24_paper_58.pdf > | en |
dc.identifier.issn | 2413-6689 | |
dc.identifier.other | PURE UUID: b790efd1-457b-42ae-a253-f1f49e9d20f0 | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/b790efd1-457b-42ae-a253-f1f49e9d20f0 | en_US |
dc.identifier.other | PURE LINK: https://www.dafx.de/paper-archive/ | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85210256397&partnerID=8YFLogxK | en_US |
dc.identifier.other | PURE LINK: https://www.dafx.de/paper-archive/2024/papers/DAFx24_paper_58.pdf | en_US |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/159508401/DAFx24_paper_58.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/131099 | |
dc.identifier.urn | URN:NBN:fi:aalto-202410046635 | |
dc.language.iso | en | en |
dc.relation.ispartof | Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24) | |
dc.relation.ispartof | Volume 27, issue 2024, pp. 171 | |
dc.relation.ispartof | International Conference on Digital Audio Effects | en |
dc.relation.ispartofseries | Proceedings of the International Conference on Digital Audio Effects | en |
dc.rights | openAccess | en |
dc.rights.copyright | Creative Commons Attribution 4.0 International License | en_US |
dc.subject.keyword | Audio signal processing | en_US |
dc.subject.keyword | analog circuits | en_US |
dc.subject.keyword | Digital signal processing | en_US |
dc.subject.keyword | Machine learning | en_US |
dc.title | Guitar tone stack modeling with a neural state-space filter | en |
dc.type | A4 Artikkeli konferenssijulkaisussa | fi |
dc.type.version | publishedVersion |