Biowaste-derived electrode and electrolyte materials for flexible supercapacitors

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorAl Haj, Yazanen_US
dc.contributor.authorMousavihashemi, Seyedabolfazlen_US
dc.contributor.authorRobertson, Dariaen_US
dc.contributor.authorBorghei, Maryamen_US
dc.contributor.authorPääkkönen, Timoen_US
dc.contributor.authorRojas, Orlando J.en_US
dc.contributor.authorKontturi, Eeroen_US
dc.contributor.authorKallio, Tanjaen_US
dc.contributor.authorVapaavuori, Jaanaen_US
dc.contributor.departmentDepartment of Chemistry and Materials Scienceen
dc.contributor.departmentDepartment of Bioproducts and Biosystemsen
dc.contributor.groupauthorMultifunctional Materials Designen
dc.contributor.groupauthorElectrochemical Energy Conversionen
dc.contributor.groupauthorBiopolymer Chemistry and Engineeringen
dc.contributor.groupauthorMaterials Chemistry of Celluloseen
dc.contributor.groupauthorBio-based Colloids and Materialsen
dc.date.accessioned2022-02-23T07:30:24Z
dc.date.available2022-02-23T07:30:24Z
dc.date.issued2022-05-01en_US
dc.description| openaire: EC/H2020/788489/EU//BioELCell | openaire: EC/H2020/760876/EU//INNPAPER Y. Al Haj and J. Vapaavuori acknowledge the generous funding from Academy of Finland's Flagship Programme under Projects No. 318890 and 318891 (Competence Center for Materials Bioeconomy, FinnCERES). M. Borghei acknowledges Magnus Ehrnrooth foundation for supporting the CarboCat project. M. Borghei and O. Rojas acknowledge the European Union’s Horizon 2020 research and innovation programme under grant agreement No 760876 (INNPAPER project) and the ERC Advanced Grant Agreement No. 788489 (BioElCell project). The Canada Excellence Research Chair initiative is gratefully acknowledged by O. Rojas. We acknowledge the provision of facilities by Aalto University at OtaNano - Nanomicroscopy Center (Aalto-NMC). T. Kallio acknowledge Business Finland the StoryEV (project 211780). T. Pääkkönen acknowledges the funding from Business Finland (R2B project: Gas-driven technology for cost-efficient production of cellulose nanocrystals 42472/31/2020).
dc.description.abstractOne of the key challenges in the development of energy storage devices relates to material sourcing in harmony with clean technologies. Herein, cellulose nanocrystals (CNC) extracted from brewery residues are used as transparent hydrogel electrolyte after physical cross-linking with aluminum ions (Al3+). The hydrogel electrolyte (Al-CNC) exhibits an ultrahigh ionic conductivity (∼24.9 mS cm−1), high optical transmittance (∼92.9% at 550 nm wavelength), outstanding compression strength (3.9 MPa at a 70% strain), and tolerates to various deformations (e.g., twisting, folding, rolling). Meanwhile, animal bone biowaste is used to synthesize porous carbon (PC) electrodes (∼879 m2 g−1) that are effective in delivering an outstanding specific capacitance (∼804 F g−1 at 1 A g−1). A fully renewable flexible symmetric supercapacitor is assembled by sandwiching the Al-CNC hydrogel between two bone-derived PC electrodes (PC//Al-CNC//PC). The obtained flexible device displays a high energy density (18.2 Wh kg−1 at 1 425 W kg−1), exceptional power density (20 833 W kg−1 at 7.1 Wh kg−1), and ∼92% capacitance retention after 6 000 cycles at 5 A g−1. We further demonstrated the biowaste-derived high-performance flexible supercapacitors for their mechanical durability and reliable electrochemical performance under bending cycles. All combined, the devices are shown to be ideally suited for renewable energy storage applications.en
dc.description.versionPeer revieweden
dc.format.extent11
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationAl Haj, Y, Mousavihashemi, S, Robertson, D, Borghei, M, Pääkkönen, T, Rojas, O J, Kontturi, E, Kallio, T & Vapaavuori, J 2022, ' Biowaste-derived electrode and electrolyte materials for flexible supercapacitors ', Chemical Engineering Journal, vol. 435, no. 3, 135058 . https://doi.org/10.1016/j.cej.2022.135058en
dc.identifier.doi10.1016/j.cej.2022.135058en_US
dc.identifier.issn1385-8947
dc.identifier.otherPURE UUID: 467f8c47-3916-4d88-ba15-fd572cd38c5een_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/467f8c47-3916-4d88-ba15-fd572cd38c5een_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/79552037/CHEM_Al_Haj_et_al_Biowaste_derived_electrode_2022_Chemical_Engineering_Journal.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/113102
dc.identifier.urnURN:NBN:fi:aalto-202202231990
dc.language.isoenen
dc.publisherElsevier Science
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/760876/EU//INNPAPER Y. Al Haj and J. Vapaavuori acknowledge the generous funding from Academy of Finland's Flagship Programme under Projects No. 318890 and 318891 (Competence Center for Materials Bioeconomy, FinnCERES). M. Borghei acknowledges Magnus Ehrnrooth foundation for supporting the CarboCat project. M. Borghei and O. Rojas acknowledge the European Union’s Horizon 2020 research and innovation programme under grant agreement No 760876 (INNPAPER project) and the ERC Advanced Grant Agreement No. 788489 (BioElCell project). The Canada Excellence Research Chair initiative is gratefully acknowledged by O. Rojas. We acknowledge the provision of facilities by Aalto University at OtaNano - Nanomicroscopy Center (Aalto-NMC). T. Kallio acknowledge Business Finland the StoryEV (project 211780). T. Pääkkönen acknowledges the funding from Business Finland (R2B project: Gas-driven technology for cost-efficient production of cellulose nanocrystals 42472/31/2020).en_US
dc.relation.ispartofseriesChemical Engineering Journalen
dc.relation.ispartofseriesVolume 435, issue 3en
dc.rightsopenAccessen
dc.titleBiowaste-derived electrode and electrolyte materials for flexible supercapacitorsen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files