Systematic identification of feature combinations for predicting drug response with Bayesian multi-view multi-task linear regression

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorAmmad-Ud-Din, Muhammaden_US
dc.contributor.authorKhan, Suleiman A.en_US
dc.contributor.authorWennerberg, Kristeren_US
dc.contributor.authorAittokallio, Teroen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorCentre of Excellence in Computational Inference, COINen
dc.contributor.groupauthorProfessorship Kaski Samuelen
dc.contributor.groupauthorHelsinki Institute for Information Technology (HIIT)en
dc.contributor.groupauthorProbabilistic Machine Learningen
dc.contributor.organizationUniversity of Helsinkien_US
dc.date.accessioned2020-01-02T14:00:38Z
dc.date.available2020-01-02T14:00:38Z
dc.date.issued2017-07-15en_US
dc.description.abstractMotivation: A prime challenge in precision cancer medicine is to identify genomic and molecular features that are predictive of drug treatment responses in cancer cells. Although there are several computational models for accurate drug response prediction, these often lack the ability to infer which feature combinations are the most predictive, particularly for high-dimensional molecular datasets. As increasing amounts of diverse genome-wide data sources are becoming available, there is a need to build new computational models that can effectively combine these data sources and identify maximally predictive feature combinations. Results: We present a novel approach that leverages on systematic integration of data sources to identify response predictive features of multiple drugs. To solve the modeling task we implement a Bayesian linear regression method. To further improve the usefulness of the proposed model, we exploit the known human cancer kinome for identifying biologically relevant feature combinations. In case studies with a synthetic dataset and two publicly available cancer cell line datasets, we demonstrate the improved accuracy of our method compared to the widely used approaches in drug response analysis. As key examples, our model identifies meaningful combinations of features for the well known EGFR, ALK, PLK and PDGFR inhibitors.en
dc.description.versionPeer revieweden
dc.format.extenti359-i368
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationAmmad-Ud-Din, M, Khan, S A, Wennerberg, K & Aittokallio, T 2017, ' Systematic identification of feature combinations for predicting drug response with Bayesian multi-view multi-task linear regression ', Bioinformatics, vol. 33, no. 14, pp. i359-i368 . https://doi.org/10.1093/bioinformatics/btx266en
dc.identifier.doi10.1093/bioinformatics/btx266en_US
dc.identifier.issn1367-4803
dc.identifier.issn1460-2059
dc.identifier.otherPURE UUID: 6a729064-2cae-46a2-83cf-242a073e952een_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/6a729064-2cae-46a2-83cf-242a073e952een_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85024504091&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/39158170/btx266.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/42064
dc.identifier.urnURN:NBN:fi:aalto-202001021175
dc.language.isoenen
dc.publisherOXFORD UNIV PRESS INC
dc.relation.ispartofseriesBioinformaticsen
dc.relation.ispartofseriesVolume 33, issue 14en
dc.rightsopenAccessen
dc.titleSystematic identification of feature combinations for predicting drug response with Bayesian multi-view multi-task linear regressionen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files