Automated clinical coding: what, why, and where we are?
Loading...
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2022-10-22
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
8
1-8
1-8
Series
npj Digital Medicine, Volume 5, issue 1
Abstract
Clinical coding is the task of transforming medical information in a patient’s health records into structured codes so that they can be used for statistical analysis. This is a cognitive and time-consuming task that follows a standard process in order to achieve a high level of consistency. Clinical coding could potentially be supported by an automated system to improve the efficiency and accuracy of the process. We introduce the idea of automated clinical coding and summarise its challenges from the perspective of Artificial Intelligence (AI) and Natural Language Processing (NLP), based on the literature, our project experience over the past two and half years (late 2019–early 2022), and discussions with clinical coding experts in Scotland and the UK. Our research reveals the gaps between the current deep learning-based approach applied to clinical coding and the need for explainability and consistency in real-world practice. Knowledge-based methods that represent and reason the standard, explainable process of a task may need to be incorporated into deep learning-based methods for clinical coding. Automated clinical coding is a promising task for AI, despite the technical and organisational challenges. Coders are needed to be involved in the development process. There is much to achieve to develop and deploy an AI-based automated system to support coding in the next five years and beyond.Description
Funding Information: The work is supported by WellCome Trust iTPA Awards (PIII009, PIII032), Health Data Research UK National Phenomics and Text Analytics Implementation Projects, and the United Kingdom Research and Innovation (grant EP/S02431X/1), UKRI Centre for Doctoral Training in Biomedical AI at the University of Edinburgh, School of Informatics. H.D. and J.C. are supported by the Engineering and Physical Sciences Research Council (EP/V050869/1) on “ConCur: Knowledge Base Construction and Curation”. HW was supported by Medical Research Council and Health Data Research UK (MR/S004149/1, MR/S004149/2); British Council (UCL-NMU-SEU international collaboration on Artificial Intelligence in Medicine: tackling challenges of low generalisability and health inequality); National Institute for Health Research (NIHR202639); Advanced Care Research Centre at the University of Edinburgh. We thank constructive comments from Murray Bell and Janice Watson in Terminology Service in Public Health Scotland, and information provided by Allison Reid in the coding department in NHS Lothian, Paul Mitchell, Nicola Symmers, and Barry Hewit in Edinburgh Cancer Informatics, and staff in Epic Systems Corporation. Thanks for the suggestions from Dr. Emma Davidson regarding clinical research. Thanks to the discussions with Dr. Kristiina Rannikmäe regarding the research on clinical coding and with Ruohua Han regarding the social and qualitative aspects of this research. In Fig. , the icon of “Clinical Coders” was from Freepik in Flaticon, https://www.flaticon.com/free-icon/user_747376 ; the icon of “Automated Coding System” was from Free Icon Library, https://icon-library.com/png/272370.html . Funding Information: The work is supported by WellCome Trust iTPA Awards (PIII009, PIII032), Health Data Research UK National Phenomics and Text Analytics Implementation Projects, and the United Kingdom Research and Innovation (grant EP/S02431X/1), UKRI Centre for Doctoral Training in Biomedical AI at the University of Edinburgh, School of Informatics. H.D. and J.C. are supported by the Engineering and Physical Sciences Research Council (EP/V050869/1) on “ConCur: Knowledge Base Construction and Curation”. HW was supported by Medical Research Council and Health Data Research UK (MR/S004149/1, MR/S004149/2); British Council (UCL-NMU-SEU international collaboration on Artificial Intelligence in Medicine: tackling challenges of low generalisability and health inequality); National Institute for Health Research (NIHR202639); Advanced Care Research Centre at the University of Edinburgh. We thank constructive comments from Murray Bell and Janice Watson in Terminology Service in Public Health Scotland, and information provided by Allison Reid in the coding department in NHS Lothian, Paul Mitchell, Nicola Symmers, and Barry Hewit in Edinburgh Cancer Informatics, and staff in Epic Systems Corporation. Thanks for the suggestions from Dr. Emma Davidson regarding clinical research. Thanks to the discussions with Dr. Kristiina Rannikmäe regarding the research on clinical coding and with Ruohua Han regarding the social and qualitative aspects of this research. In Fig. 1 , the icon of “Clinical Coders” was from Freepik in Flaticon, https://www.flaticon.com/free-icon/user_747376 ; the icon of “Automated Coding System” was from Free Icon Library, https://icon-library.com/png/272370.html. Publisher Copyright: © 2022, The Author(s).
Keywords
Other note
Citation
Dong, H, Falis, M, Whiteley, W, Alex, B, Matterson, J, Ji, S, Chen, J & Wu, H 2022, ' Automated clinical coding: what, why, and where we are? ', npj Digital Medicine, vol. 5, no. 1, 159, pp. 1-8 . https://doi.org/10.1038/s41746-022-00705-7