From micro to nano : polypropylene composites reinforced with TEMPO-oxidised cellulose of different fibre widths

Loading...
Thumbnail Image

Access rights

openAccess

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2021-03

Major/Subject

Mcode

Degree programme

Language

en

Pages

17
2947-2963

Series

Cellulose, Volume 28, issue 5

Abstract

TEMPO-oxidised cellulose fibres are often explored as nano-reinforcement for polymers. However, it is unclear whether micrometre-sized TEMPO-oxidised cellulose fibres also possess similar reinforcing potential. In this work, we report the mechanical response of polypropylene (PP) composites reinforced with TEMPO-oxidised cellulose (TOC) of different fibre widths. Micrometre-sized TOC fibres (TOCF) containing sodium carboxylate (TOCF-Na) and free hydroxyl (TOCF-H) groups, as well as nano-sized TOC nanofibrils (TOCN) were produced from dissolving pulp and incorporated into PP matrix via melt-extrusion. It was found that model PP composites containing micrometre-sized TOCF-Na and TOCF-H possessed the highest tensile modulus of up to 2.5 GPa; 40% improvement over neat PP and 30% increase over PP/TOCN composite. No significant differences in the tensile strength of PP/TOCF-Na and PP/TOCF-H composites were observed when compared to neat PP. The incorporation of nano-sized TOCN into PP however, led to a 6% decrease in tensile strength. Single-edge notched beam fracture toughness test further showed that PP/TOCN composite possessed the lowest fracture toughness of 2.52 MPa m1/2; a decrease of 18% over PP reinforced with micrometre-sized TOCF-Na and TOCF-H. Our study shows that micrometre-sized TOCFs serve as better reinforcement for polymers compared to nano-sized TOCN. This is attributed to the better dispersion of TOCF in the PP matrix. Furthermore, the presence of surface microfibrillation on TOCFs also enhanced the quality of the TOCF-PP interface through mechanical interlocking and local stiffening of the PP matrix.

Description

Keywords

Biocomposite, Extrusion, Nanocellulose, Pulp, Tensile properties

Other note

Citation

Gaduan, A N, Solhi, L, Kontturi, E & Lee, K Y 2021, ' From micro to nano : polypropylene composites reinforced with TEMPO-oxidised cellulose of different fibre widths ', Cellulose, vol. 28, no. 5, pp. 2947-2963 . https://doi.org/10.1007/s10570-020-03635-3