Performance Evaluation of a Combined Anomaly Detection Platform

Loading...
Thumbnail Image

Access rights

openAccess

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2019-07-24

Major/Subject

Mcode

Degree programme

Language

en

Pages

15
100964-100978

Series

IEEE Access, Volume 7, issue 2169-3536

Abstract

Hybrid Anomaly Detection Model (HADM) is a platform that filters network traffic and identifies malicious activities on the network. The platform applies data mining techniques to tackle effectively the security issues in high load communication networks. The platform uses a combination of linear and learning algorithms combined with protocol analyzer. The linear algorithms filter and extract distinctive attributes and features of the cyber-attacks while the learning algorithms use these attributes and features to identify new types of cyber-attacks. The protocol analyzer in this platform classifies and filters vulnerable protocols to avoid unnecessary computation load. The use of linear algorithms in conjunction with learning algorithms and protocol analyzer allows the HADM to achieve improved efficiency in terms of accuracy and computation time to detect cyber-attacks over existing solutions. While authors’ previous paper evaluated HADM efficiency (accuracy and computation time) against related studies, this paper, concentrates on HADM robustness and scalability. For this purpose, five datasets, including ISCX-2012, UNSW-NB15 Jan, UNSW-NB15 Feb, ISCX-2017, and MAWILab-2018, with various size and diverse attacks have been used. Different feature selection methods are applied to find the best features. The feature selection methods are selected based on the algorithms’ computation time and detection rate. The best algorithms are then selected through a benchmark on applied datasets and based on the metrics such as cross-entropy loss, precision, recall, and computation time. The result of HADM platform shows robustness and scalability against datasets with different size and diverse attacks.

Description

Keywords

Anomaly Detection, Data Mining, feature selection, machine learning, security

Other note

Citation

Monshizadeh, M, Khatri, V, Atli, B, Kantola, R & Yan, Z 2019, ' Performance Evaluation of a Combined Anomaly Detection Platform ', IEEE Access, vol. 7, no. 2169-3536, pp. 100964-100978 . https://doi.org/10.1109/ACCESS.2019.2930832