Comparing Boolean Operation Methods on 3D Solids
Loading...
URL
Journal Title
Journal ISSN
Volume Title
Perustieteiden korkeakoulu |
Master's thesis
Unless otherwise stated, all rights belong to the author. You may download, display and print this publication for Your own personal use. Commercial use is prohibited.
Authors
Date
2023-08-21
Department
Major/Subject
Computer Science
Mcode
SCI3042
Degree programme
Master’s Programme in Computer, Communication and Information Sciences
Language
en
Pages
77
Series
Abstract
Geometric engines are developed to give answers on geometrical queries, such as, what is the volume of a shape? Developing, testing and maintaining a geometric engine which can be used generically to answer arbitrary geometric queries is a tedious and time consuming task. Thousands of work hours are being spent towards this purpose. A very important element of such geometric engines is the Boolean operations on 3D objects. Boolean operations can be used to develop powerful tools for CAD/CAM applications, by which, end users can save thousands of work hours during modeling. While robust Boolean operations on 3D objects are difficult to implement, once available, many geometric queries can be reduced to a collection of Boolean operations. This reduction would save thousands of hours for the developers of such CAD/CAM applications. The goal of this thesis is to compare the Boolean implementation of Tekla Structures with the Boolean implementation of CGAL and a recently introduced method, EMBER. Using the results of this thesis, Tekla Structures’ currently unidentified vulnerabilities in its Boolean implementation can be identified and thus, improved. Quantitative results showed that Tekla Structures’ Boolean implementation, while being fast, suffered in terms of robustness during the union and difference operations with respect to CGAL and EMBER while doing remarkably well in the intersection operations.Description
Supervisor
Kisfaludi-Bak, SándorThesis advisor
Aho, MarkoKeywords
Solid Modeling, Boolean Operations, Geometry Processing, Robustness