On the troll-trust model for edge sign prediction in social networks

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorLe Falher, Gérauden_US
dc.contributor.authorCesa-Bianchi, Nicolòen_US
dc.contributor.authorGentile, Claudioen_US
dc.contributor.authorVitale, Fabioen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorAdj. Prof. Gionis Aris groupen
dc.contributor.organizationUniversity of Lilleen_US
dc.contributor.organizationUniversity of Milanen_US
dc.contributor.organizationUniversity of Insubriaen_US
dc.date.accessioned2020-01-02T14:07:33Z
dc.date.available2020-01-02T14:07:33Z
dc.date.issued2017-01-01en_US
dc.description.abstractIn the problem of edge sign prediction, we are given a directed graph (representing a social network), and our task is to predict the binary labels of the edges (i.e., the positive or negative nature of the social relationships). Many successful heuristics for this problem are based on the troll-trust features, estimating at each node the fraction of outgoing and incoming positive/negative edges. We show that these heuristics can be understood, and rigorously analyzed, as approximators to the Bayes optimal classifier for a simple probabilistic model of the edge labels. We then show that the maximum likelihood estimator for this model approximately corresponds to the predictions of a Label Propagation algorithm run on a transformed version of the original social graph. Extensive experiments on a number of real-world datasets show that this algorithm is competitive against state-of-the-art classifiers in terms of both accuracy and scalability. Finally, we show that troll-trust features can also be used to derive online learning algorithms which have theoretical guarantees even when edges are adversarially labeled.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationLe Falher, G, Cesa-Bianchi, N, Gentile, C & Vitale, F 2017, On the troll-trust model for edge sign prediction in social networks . in Proceedings of the 20th International Conference on Artificial Intelligence and Statistics . Proceedings of Machine Learning Research, vol. 54, JMLR, pp. 402-411, International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, United States, 20/04/2017 . < http://proceedings.mlr.press/v54/falher17a.html >en
dc.identifier.issn2640-3498
dc.identifier.otherPURE UUID: b55dc695-02ce-4b99-9151-ed82f437283fen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/b55dc695-02ce-4b99-9151-ed82f437283fen_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85067551168&partnerID=8YFLogxK
dc.identifier.otherPURE LINK: http://proceedings.mlr.press/v54/falher17a.htmlen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/39226274/falher17a.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/42190
dc.identifier.urnURN:NBN:fi:aalto-202001021301
dc.language.isoenen
dc.relation.ispartofInternational Conference on Artificial Intelligence and Statisticsen
dc.relation.ispartofseriesProceedings of the 20th International Conference on Artificial Intelligence and Statisticsen
dc.relation.ispartofseriespp. 402-411en
dc.relation.ispartofseriesProceedings of Machine Learning Research ; Volume 54en
dc.rightsopenAccessen
dc.titleOn the troll-trust model for edge sign prediction in social networksen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionpublishedVersion

Files