Fracture toughness of semi-regular lattices
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Authors
Date
Major/Subject
Mcode
Degree programme
Language
en
Pages
9
Series
International Journal of Solids and Structures, Volume 270
Abstract
Previous studies have shown that the kagome lattice has a remarkably high fracture toughness. This architecture is one of eight semi-regular tessellations, and this work aims to quantify the toughness of three other unexplored semi-regular lattices: the snub-trihexagonal, snub-square and elongated-triangular lattices. Their mode I fracture toughness was obtained with finite element simulations, using the boundary layer technique. These simulations showed that the fracture toughness KIc of a snub-trihexagonal lattice scales linearly with relative density ρ̄. In contrast, the fracture toughness of snub-square and elongated-triangular lattices scale as ρ̄1.5, an exponent different from other prismatic lattices reported in the literature. These numerical results were then compared with fracture toughness tests performed on Compact Tension specimens made from a ductile polymer and produced by additive manufacturing. The numerical and experimental results were in excellent agreement, indicating that our samples had a sufficiently large number of unit cells to accurately measure the fracture toughness. This result may be useful to guide the design of future experiments.Description
Funding Information: We would like to acknowledge the financial support of the Academy of Finland (decision 322007). Publisher Copyright: © 2023 The Author(s)
Other note
Citation
Omidi, M & St-Pierre, L 2023, 'Fracture toughness of semi-regular lattices', International Journal of Solids and Structures, vol. 270, 112233. https://doi.org/10.1016/j.ijsolstr.2023.112233