Transport-property tailored thin films for thermoelectrics through atomic/molecular layer deposition

Thumbnail Image
Journal Title
Journal ISSN
Volume Title
School of Chemical Technology | Doctoral thesis (article-based) | Defence date: 2023-05-15
Degree programme
74 + app. 54
Aalto University publication series DOCTORAL THESES, 56/2023
Atomic layer deposition (ALD) creates a unique opportunity for effective materials nanostructuring. In this thesis, ALD, along with its other form, molecular layer deposition (MLD) and spin coating (SC), are utilized to alter the electrical, thermal, and structural aspects of thin films. Such alterations can be advantageous in various applications; however, thermoelectrics has been the subject of this study as a proof of concept. Thermoelectric energy harvesters are an intriguing group of materials capable of transforming thermal gradient to electrical potential and vice versa. The sequential nature of ALD and its independent deposition parameters provide tools for modifying the deposited films. Higher electrical and lower thermal conductivities are needed to achieve a better thermoelectric material. However, achieving this goal can be challenging due to the thermal conduction via electrons. The only option left is to suppress the thermal conductivity via phonons. The current research has illustrated that even a minimal change in deposition parameters, such as purge time after the metal precursor pulse, can improve thermoelectric performance through defect formation. Consequently, increase the carrier conduction via electrons and decrease the thermal conduction via phonons. Another approach to improving thermoelectric performance is to create interfaces inside the films. In the current study, this was carried out by growing superlattice films using a combination of ALD, MLD, and SC. Specifically, superlattice films of ZnO with different organics, i.e., p-phenylenediamine (PPD), hydroquinone (HQ), terephthalic acid (TPA), 4,4'-oxydianiline (ODA), and cellulose nanocrystals (CNCs) were prepared and studied. The results indicate that different organic compounds can have distinct effects on the inorganic matrix. This thesis focuses primarily on ZnO as an ideal n-type thermoelectric material. However, a p-type equivalent must be coupled with the n-type ZnO to complete the thermoelectric module. To address this issue, here, a versatile ALD process for SnO was developed in this study. The obtained films were analyzed and confirmed to be pure SnO films.
Supervising professor
Karppinen, Maarit, Prof., Aalto University, Department of Chemistry and Materials Science, Finland
chemistry, materials science
  • [Publication 1]: Ghiyasi, Ramin; Milich, Milena; Tomko, John; Tewari, Girish C.; Lastusaari, Mika; Hopkins, Patrick E.; Karppinen, Maarit. 2022. Simultaneously enhanced electrical conductivity and suppressed thermal conductivity for ALD ZnO films via purge-time controlled defects. Applied Physics Letters, 120, 06, 062106.
    Full text in Acris/Aaltodoc:
    DOI: 10.1063/5.0081657 View at publisher
  • [Publication 2]: Ghiyasi, Ramin; Tewari, Girish C.; Karppinen, Maarit. 2020, Organic-component dependent crystal orientation and electrical transport properties in ALD/MLD grown ZnO–organic superlattices. Journal of Physical Chemistry C, 124, 25, 13765.
    Full text in Acris/Aaltodoc:
    DOI: 10.1021/acs.jpcc.0c03053 View at publisher
  • [Publication 3]: Ghiyasi, Ramin; Milich, Milena; Tomko, John; Hopkins, Patrick E.; Karppinen, Maarit. 2021. Organic-component dependent thermal conductivity reduction in ALD/MLD grown ZnO: organic superlattice thin films. Applied Physics Letters, 118, 21, 211903.
    DOI: 10.1063/5.0052450 View at publisher
  • [Publication 4]: Spiliopoulos, Panagiotis; Gestranius, Marie; Zhang, Chao; Ghiyasi, Ramin; Tomko, John; Arstila, Kai; Putkonen, Matti; Hopkins, Patrick E; Karppinen, Maarit; Tammelin, Tekla; Kontturi, Eero. 2022. Cellulose-inorganic hybrids of strongly reduced thermal conductivity. Cellulose, 1, 211903.
    Full text in Acris/Aaltodoc:
    DOI: 10.1007/s10570-022-04768-3 View at publisher
  • [Publication 5]: Huster, Niklas; Ghiyasi, Ramin; Zanders, David; Rogalla, Detlef; Karppinen, Maarit. 2022. SnO via water based ALD employing tin(II) formamidinate: precursor characterization and process development. Dalton Transactions.
    Full text in Acris/Aaltodoc:
    DOI: 10.1039/d2dt02562k View at publisher