Integrating Carbon Nanomaterials with Metals for Bio-sensing Applications
Loading...
Access rights
openAccess
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal
View/Open full text file from the Research portal
Other link related to publication
View publication in the Research portal
View/Open full text file from the Research portal
Other link related to publication
Date
2019-01-01
Major/Subject
Mcode
Degree programme
Language
en
Pages
12
Series
MOLECULAR NEUROBIOLOGY
Abstract
Age structure in most developed countries is changing fast as the average lifespan is increasing significantly, calling for solutions to provide improved treatments for age-related neurological diseases and disorders. In order to address these problems, a reliable way of recording information about neurotransmitters from in vitro and in vivo applications is needed to better understand neurological diseases and disorders as well as currently used treatments. Likewise, recent developments in medicine, especially with the opioid crisis, are demanding a swift move to personalized medicine to administer patient needs rather than population-wide averages. In order to enable the so-called personalized medicine, it is necessary to be able to do measurements in vivo and in real time. These actions require sensitive and selective detection of different analytes from very demanding environments. Current state-of-the-art materials are unable to provide sensitive and selective detection of neurotransmitters as well as the required time resolution needed for drug molecules at a reasonable cost. To meet these challenges, we have utilized different metals to grow carbon nanomaterials and applied them for sensing applications showing that there are clear differences in their electrochemical properties based on the selected catalyst metal. Additionally, we have combined atomistic simulations to support optimizing materials for experiments and to gain further understanding of the atomistic level reactions between different analytes and the sensor surface. With carbon nanostructures grown from Ni and Al + Co + Fe hybrid, we can detect dopamine, ascorbic acid, and uric acid simultaneously. On the other hand, nanostructures grown from platinum provide a feasible platform for detection of H2O2 making them suitable candidates for enzymatic biosensors for detection of glutamate, for example. Tetrahedral amorphous carbon electrodes have an ability to detect morphine, paracetamol, tramadol, and O-desmethyltramadol. With carbon nanomaterial-based sensors, it is possible to reach metal-like properties in sensing applications using only a fraction of the metal as seed for the material growth. We have also seen that by using nanodiamonds as growth catalyst for carbon nanofibers, it is not possible to detect dopamine and ascorbic acid simultaneously, although the morphology of the resulting nanofibers is similar to the ones grown using Ni. This further indicates the importance of the metal selection for specific applications. However, Ni as a continuous layer or as separate islands does not provide adequate performance. Thus, it appears that metal nanoparticles combined with fiber-like morphology are needed for optimized sensor performance for neurotransmitter detection. This opens up a new research approach of application-specific nanomaterials, where carefully selected metals are integrated with carbon nanomaterials to match the needs of the sensing application in question.Description
Keywords
Bio-sensing, Carbon, Carbon nanomaterials, Dopamine
Other note
Citation
Sainio, S, Leppänen, E, Mynttinen, E, Palomäki, T, Wester, N, Etula, J, Isoaho, N, Peltola, E, Koehne, J, Meyyappan, M, Koskinen, J & Laurila, T 2019, ' Integrating Carbon Nanomaterials with Metals for Bio-sensing Applications ', Molecular Neurobiology . https://doi.org/10.1007/s12035-019-01767-7