Nonequilibrium effects in diffusion of interacting particles on vicinal surfaces
Loading...
Access rights
© 2005 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. http://scitation.aip.org/content/aip/journal/jcp
Final published version
URL
Journal Title
Journal ISSN
Volume Title
School of Science |
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Unless otherwise stated, all rights belong to the author. You may download, display and print this publication for Your own personal use. Commercial use is prohibited.
Date
2005
Major/Subject
Mcode
Degree programme
Language
en
Pages
214728/1-8
Series
The Journal of Chemical Physics, Volume 122, Issue 21
Abstract
We study the influence of nonequilibrium conditions on the collective diffusion of interacting particles on vicinal surfaces. To this end, we perform Monte Carlo simulations of a lattice-gas model of an ideal stepped surface, where adatoms have nearest-neighbor attractive or repulsive interactions. Applying the Boltzmann–Matano method to spreading density profiles of the adatoms allows the definition of an effective, time-dependent collective diffusion coefficient DtC(θ) for all coverages θ. In the case of diffusion across the steps and strong binding at lower step edges we observe three stages in the behavior of the corresponding Dtxx,C(θ). At early times when the adatoms have not yet crossed the steps, Dtxx,C(θ) is influenced by the presence of steps only weakly. At intermediate times, where the adatoms have crossed several steps, there are sharp peaks at coverages θ<1∕L and θ>1−1∕L, where L is the terrace width. These peaks are due to different rates of relaxation of the density at successive terraces. At late stages of spreading, these peaks vanish and Dtxx,C(θ) crosses over to its equilibrium value, where for strong step edge binding there is a maximum at θ=1∕L. In the case of diffusion in direction along the steps the nonequilibrium effects in Dtyy,C(θ) are much weaker, and are apparent only when diffusion along ledges is strongly suppressed or enhanced.Description
Keywords
diffusion, activation energies, optical microcavities, solid surfaces, impurity diffusion
Other note
Citation
Masin, M. & Vattulainen, I. & Ala-Nissilä, Tapio & Chvoj, Z. 2005. Nonequilibrium effects in diffusion of interacting particles on vicinal surfaces. The Journal of Chemical Physics. Volume 122, Issue 21. P. 214728/1-8. 1089-7690 (electronic). 0021-9606 (printed). DOI: 10.1063/1.1924695.