Machine Learning Based Method for Estimating Energy Losses in Large-Scale Unbalanced Distribution Systems with Photovoltaics
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Mahmoud, Karar | |
dc.contributor.author | Abdelnasser, Mohamed | |
dc.contributor.author | Kashef, Heba | |
dc.contributor.author | Puig, Domenec | |
dc.contributor.author | Lehtonen, Matti | |
dc.contributor.department | Department of Electrical Engineering and Automation | |
dc.contributor.department | Aswan University | |
dc.contributor.department | Universidad Rovira i Virgili | |
dc.date.accessioned | 2021-09-08T06:53:46Z | |
dc.date.available | 2021-09-08T06:53:46Z | |
dc.date.issued | 2020-12 | |
dc.description.abstract | In the recent years, the penetration of photovoltaics (PV) has obviously been increased in unbalanced power distribution systems. Driven by this trend, comprehensive simulation tools are required to accurately analyze large-scale distribution systems with a fast-computational speed. In this paper, we propose an efficient method for performing time-series simulations for unbalanced power distribution systems with PV. Unlike the existing iterative methods, the proposed method is based on machine learning. Specifically, we propose a fast, reliable and accurate method for determining energy losses in distribution systems with PV. The proposed method is applied to a large-scale unbalanced distribution system (the IEEE 906 Bus European LV Test Feeder) with PV grid-connected units. The method is validated using OpenDSS software. The results demonstrate the high accuracy and computational performance of the proposed method. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 7 | |
dc.format.extent | 157-163 | |
dc.format.mimetype | application/pdf | |
dc.identifier.citation | Mahmoud , K , Abdelnasser , M , Kashef , H , Puig , D & Lehtonen , M 2020 , ' Machine Learning Based Method for Estimating Energy Losses in Large-Scale Unbalanced Distribution Systems with Photovoltaics ' , INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE , vol. 6 , no. 4 , pp. 157-163 . https://doi.org/10.9781/ijimai.2020.08.002 | en |
dc.identifier.doi | 10.9781/ijimai.2020.08.002 | |
dc.identifier.issn | 1989-1660 | |
dc.identifier.other | PURE UUID: 1dd4b18c-5451-41cc-9876-bfb68b4f6c49 | |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/1dd4b18c-5451-41cc-9876-bfb68b4f6c49 | |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/67183258/ELEC_Mahmoud_etal_Machine_Learning_Based_Method_for_Estimating_IJIMAI_2020.pdf | |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/109824 | |
dc.identifier.urn | URN:NBN:fi:aalto-202109089052 | |
dc.language.iso | en | en |
dc.publisher | IMAI SOLUTIONS | |
dc.relation.ispartofseries | INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE | en |
dc.relation.ispartofseries | Volume 6, issue 4 | en |
dc.rights | openAccess | en |
dc.title | Machine Learning Based Method for Estimating Energy Losses in Large-Scale Unbalanced Distribution Systems with Photovoltaics | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |
dc.type.version | publishedVersion |