Multiparametric shell eigenvalue problems

No Thumbnail Available

Access rights

openAccess

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2019-01-01

Major/Subject

Mcode

Degree programme

Language

en

Pages

25
721-745

Series

Computer Methods in Applied Mechanics and Engineering, Volume 343

Abstract

The eigenproblem for thin shells of revolution under uncertainty in material parameters is discussed. Here the focus is on the smallest eigenpairs. Shells of revolution have natural eigenclusters due to symmetries, moreover, the eigenpairs depend on a deterministic parameter, the dimensionless thickness. The stochastic subspace iteration algorithms presented here are capable of resolving the smallest eigenclusters. In the case of random material parameters, it is possible that the eigenmodes cross in the stochastic parameter space. This interesting phenomenon is demonstrated via numerical experiments. Finally, the effect of the chosen material model on the asymptotics in relation to the deterministic parameter is shown to be negligible.

Description

Keywords

Shells of revolution, Eigenvalue problems, Uncertainty quantification, Stochastic finite element methods

Other note

Citation

Laaksonen , M & Hakula , H 2019 , ' Multiparametric shell eigenvalue problems ' , Computer Methods in Applied Mechanics and Engineering , vol. 343 , pp. 721-745 . https://doi.org/10.1016/j.cma.2018.09.011