Sociotechnical Envelopment of Artificial Intelligence: An Approach to Organizational Deployment of Inscrutable Artificial Intelligence Systems
Loading...
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal
View/Open full text file from the Research portal
Other link related to publication
View publication in the Research portal
View/Open full text file from the Research portal
Other link related to publication
Date
2021
Major/Subject
Mcode
Degree programme
Language
en
Pages
28
325-352
325-352
Series
Journal of the Association for Information Systems, Volume 22, issue 2
Abstract
The paper presents an approach for implementing inscrutable (i.e., nonexplainable) artificial intelligence (AI) such as neural networks in an accountable and safe manner in organizational settings. Drawing on an exploratory case study and the recently proposed concept of envelopment, it describes a case of an organization successfully “enveloping” its AI solutions to balance the performance benefits of flexible AI models with the risks that inscrutable models can entail. The authors present several envelopment methods—establishing clear boundaries within which the AI is to interact with its surroundings, choosing and curating the training data well, and appropriately managing input and output sources—alongside their influence on the choice of AI models within the organization. This work makes two key contributions: It introduces the concept of sociotechnical envelopment by demonstrating the ways in which an organization’s successful AI envelopment depends on the interaction of social and technical factors, thus extending the literature’s focus beyond mere technical issues. Secondly, the empirical examples illustrate how operationalizing a sociotechnical envelopment enables an organization to manage the trade-off between low explainability and high performance presented by inscrutable models. These contributions pave the way for more responsible, accountable AI implementations in organizations, whereby humans can gain better control of even inscrutable machine-learning models.Description
Keywords
Artificial Intelligence, Explainable AI, XAI, Envelopment, Sociotechnical Systems, Machine Learning, Public Sector
Citation
Asatiani , A , Malo , P , Rådberg Nagbøl , P , Penttinen , E , Rinta-Kahila , T & Salovaara , A 2021 , ' Sociotechnical Envelopment of Artificial Intelligence: An Approach to Organizational Deployment of Inscrutable Artificial Intelligence Systems ' , Journal of the Association for Information Systems , vol. 22 , no. 2 , 8 , pp. 325-352 . https://doi.org/10.17705/1jais.00664