Locally checkable problems in rooted trees

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorBalliu, Alkidaen_US
dc.contributor.authorBrandt, Sebastianen_US
dc.contributor.authorChang, Yi Junen_US
dc.contributor.authorOlivetti, Dennisen_US
dc.contributor.authorStudený, Janen_US
dc.contributor.authorSuomela, Jukkaen_US
dc.contributor.authorTereshchenko, Aleksandren_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorComputer Science Professorsen
dc.contributor.groupauthorComputer Science - Large-scale Computing and Data Analysis (LSCA)en
dc.contributor.groupauthorComputer Science - Algorithms and Theoretical Computer Science (TCS)en
dc.contributor.groupauthorProfessorship Suomela J.en
dc.contributor.organizationHelmholtz Center for Information Securityen_US
dc.contributor.organizationNational University of Singaporeen_US
dc.contributor.organizationDepartment of Computer Scienceen_US
dc.contributor.organizationGran Sasso Science Instituteen_US
dc.date.accessioned2023-08-11T07:22:44Z
dc.date.available2023-08-11T07:22:44Z
dc.date.issued2023-09en_US
dc.descriptionPublisher Copyright: © 2022, The Author(s).
dc.description.abstractConsider any locally checkable labeling problem Π in rooted regular trees: there is a finite set of labels Σ , and for each label x∈ Σ we specify what are permitted label combinations of the children for an internal node of label x (the leaf nodes are unconstrained). This formalism is expressive enough to capture many classic problems studied in distributed computing, including vertex coloring, edge coloring, and maximal independent set. We show that the distributed computational complexity of any such problem Π falls in one of the following classes: it is O(1), Θ (log ∗n) , Θ (log n) , or nΘ (1) rounds in trees with n nodes (and all of these classes are nonempty). We show that the complexity of any given problem is the same in all four standard models of distributed graph algorithms: deterministic LOCAL, randomized LOCAL, deterministic CONGEST, and randomized CONGEST model. In particular, we show that randomness does not help in this setting, and the complexity class Θ (log log n) does not exist (while it does exist in the broader setting of general trees). We also show how to systematically determine the complexity class of any such problem Π , i.e., whether Π takes O(1), Θ (log ∗n) , Θ (log n) , or nΘ (1) rounds. While the algorithm may take exponential time in the size of the description of Π , it is nevertheless practical: we provide a freely available implementation of the classifier algorithm, and it is fast enough to classify many problems of interest.en
dc.description.versionPeer revieweden
dc.format.extent35
dc.format.extent277–311
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationBalliu, A, Brandt, S, Chang, Y J, Olivetti, D, Studený, J, Suomela, J & Tereshchenko, A 2023, ' Locally checkable problems in rooted trees ', Distributed Computing, vol. 36, no. 3, pp. 277–311 . https://doi.org/10.1007/s00446-022-00435-9en
dc.identifier.doi10.1007/s00446-022-00435-9en_US
dc.identifier.issn0178-2770
dc.identifier.issn1432-0452
dc.identifier.otherPURE UUID: 79db2b1a-2a23-486a-8a04-9fed082eddc3en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/79db2b1a-2a23-486a-8a04-9fed082eddc3en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85136579563&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/117588274/SCI_Balliu_etal_Distributed_Computing_2023.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/122368
dc.identifier.urnURN:NBN:fi:aalto-202308114717
dc.language.isoenen
dc.publisherSpringer
dc.relation.ispartofseriesDISTRIBUTED COMPUTINGen
dc.relation.ispartofseriesVolume 36, issue 3en
dc.rightsopenAccessen
dc.titleLocally checkable problems in rooted treesen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files