Electrochemical cobalt oxidation in chloride media

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorMakarava, Irynaen_US
dc.contributor.authorVänskä, Jereen_US
dc.contributor.authorKramek, Agnieszkaen_US
dc.contributor.authorRyl, Jaceken_US
dc.contributor.authorWilson, Benjamin P.en_US
dc.contributor.authorYliniemi, Kirsien_US
dc.contributor.authorLundström, Marien_US
dc.contributor.departmentDepartment of Chemical and Metallurgical Engineeringen
dc.contributor.departmentDepartment of Chemistry and Materials Scienceen
dc.contributor.groupauthorHydrometallurgy and Corrosionen
dc.contributor.organizationRzeszow University of Technologyen_US
dc.contributor.organizationGdańsk University of Technologyen_US
dc.date.accessioned2024-05-29T05:22:44Z
dc.date.available2024-05-29T05:22:44Z
dc.date.issued2024-07-01en_US
dc.description| openaire: EC/HE/101058124 /EU//ENICON
dc.description.abstractThe green transition, despite recent advances in cobalt-free battery technologies, is still highly dependent on the availability of critical cobalt-based materials. Consequently, there has been increasing interest towards the development of new methods that maximize critical metals recovery from industrial hydrometallurgical solutions. In the current study, direct anodic oxidation of cobalt species from cobalt chloride solutions was studied as one alternative future strategy for cobalt recovery. Electrochemical methods were used (cyclic voltammetry, potentiostatic anodic deposition) and the effect of pH, temperature, and the concentration of cobalt and chloride ions on cobalt precipitation were investigated. The increase of pH and temperature was shown to stabilize the electrochemical oxidation of cobalt, while a decrease in cobalt concentration had a negative effect on precipitation. Scanning Electron Microscope, Atomic Force Microscopy and X-ray Photoelectron Spectroscopy were exploited to evaluate the morphology, structure, and composition of obtained anodic product. Calculated for potentiostatic anodic deposition (at highest studied potential of 1300 mV vs. Ag/AgCl) nucleation mechanism shows that the rate of nucleation for oxygen-cobalt species is faster than the subsequent growth rate of nuclei (instantaneous mechanism). XPS results confirmed that mixed Co3O4/Co(OH)2/CoOOH precipitate could be obtained by optimized anodic potentiostatic deposition in the range from 900 to 1150 mV and pH from 3 to 6 at 60 °C.en
dc.description.versionPeer revieweden
dc.format.extent11
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationMakarava, I, Vänskä, J, Kramek, A, Ryl, J, Wilson, B P, Yliniemi, K & Lundström, M 2024, 'Electrochemical cobalt oxidation in chloride media', Minerals Engineering, vol. 211, 108679. https://doi.org/10.1016/j.mineng.2024.108679en
dc.identifier.doi10.1016/j.mineng.2024.108679en_US
dc.identifier.issn0892-6875
dc.identifier.issn1872-9444
dc.identifier.otherPURE UUID: f0f996f3-5631-4421-88c2-1cc5edb55694en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/f0f996f3-5631-4421-88c2-1cc5edb55694en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85189506650&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/146669705/CHEM_Makarava_et_al_Electrochemical_cobalt_2024_Minerals_Engineering.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/128390
dc.identifier.urnURN:NBN:fi:aalto-202405293992
dc.language.isoenen
dc.publisherElsevier
dc.relationinfo:eu-repo/grantAgreement/EC/HE/101058124 /EU//ENICONen_US
dc.relation.ispartofseriesMinerals Engineeringen
dc.relation.ispartofseriesVolume 211en
dc.rightsopenAccessen
dc.subject.keywordCobalt hydroxideen_US
dc.subject.keywordCobalt oxideen_US
dc.subject.keywordCobalt oxyhydroxideen_US
dc.subject.keywordElectrochemistryen_US
dc.subject.keywordOxidationen_US
dc.titleElectrochemical cobalt oxidation in chloride mediaen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files