Electrochemical cobalt oxidation in chloride media
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2024-07-01
Major/Subject
Mcode
Degree programme
Language
en
Pages
11
Series
Minerals Engineering, Volume 211
Abstract
The green transition, despite recent advances in cobalt-free battery technologies, is still highly dependent on the availability of critical cobalt-based materials. Consequently, there has been increasing interest towards the development of new methods that maximize critical metals recovery from industrial hydrometallurgical solutions. In the current study, direct anodic oxidation of cobalt species from cobalt chloride solutions was studied as one alternative future strategy for cobalt recovery. Electrochemical methods were used (cyclic voltammetry, potentiostatic anodic deposition) and the effect of pH, temperature, and the concentration of cobalt and chloride ions on cobalt precipitation were investigated. The increase of pH and temperature was shown to stabilize the electrochemical oxidation of cobalt, while a decrease in cobalt concentration had a negative effect on precipitation. Scanning Electron Microscope, Atomic Force Microscopy and X-ray Photoelectron Spectroscopy were exploited to evaluate the morphology, structure, and composition of obtained anodic product. Calculated for potentiostatic anodic deposition (at highest studied potential of 1300 mV vs. Ag/AgCl) nucleation mechanism shows that the rate of nucleation for oxygen-cobalt species is faster than the subsequent growth rate of nuclei (instantaneous mechanism). XPS results confirmed that mixed Co3O4/Co(OH)2/CoOOH precipitate could be obtained by optimized anodic potentiostatic deposition in the range from 900 to 1150 mV and pH from 3 to 6 at 60 °C.Description
| openaire: EC/HE/101058124 /EU//ENICON
Keywords
Cobalt hydroxide, Cobalt oxide, Cobalt oxyhydroxide, Electrochemistry, Oxidation
Other note
Citation
Makarava, I, Vänskä, J, Kramek, A, Ryl, J, Wilson, B P, Yliniemi, K & Lundström, M 2024, ' Electrochemical cobalt oxidation in chloride media ', Minerals Engineering, vol. 211, 108679 . https://doi.org/10.1016/j.mineng.2024.108679