Estimation and prediction of state of health of electric vehicle batteries using discrete incremental capacity analysis based on real driving data

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorXu, Zhichengen_US
dc.contributor.authorWang, Junen_US
dc.contributor.authorLund, Peter D.en_US
dc.contributor.authorZhang, Yaomingen_US
dc.contributor.departmentDepartment of Applied Physicsen
dc.contributor.groupauthorNew Energy Technologiesen
dc.contributor.organizationSoutheast University, Nanjingen_US
dc.date.accessioned2021-03-22T07:09:37Z
dc.date.available2021-03-22T07:09:37Z
dc.date.embargoinfo:eu-repo/date/embargoEnd/2023-03-09en_US
dc.date.issued2021-06-15en_US
dc.descriptionFunding Information: This work is based on a first prize competition entry by one of the authors (Xu) to the National College New Energy Vehicle Big Data Application Innovation Competition ( http://www.ncbdc.top/ ) organized by the National Big Data Alliance of New Energy Vehicles (NDANEV: http://www.ndanev.com/ ). The authors thank NDANEV for providing data on the EVs. The financial support by the National Science Foundation of China (Grant number 51736006 ) is greatly acknowledged. This work was partially supported by Aalto University . Publisher Copyright: © 2021 Elsevier Ltd Copyright: Copyright 2021 Elsevier B.V., All rights reserved.
dc.description.abstractThe accuracy of the state of health (SoH) estimation and prediction is of great importance to the operational effectiveness and safety of electric vehicles. Present approaches mostly employ data-driven analysis with laboratory measurements to determine these parameters. Here a novel method is proposed using discrete incremental capacity analysis based on real-life driving data, which enables to estimate the battery SoH without any prior detailed knowledge of battery internal specifics such as current capacity/resistance information. The method accounts for the battery characteristics. It is robust, highly compatible, and has a short computing time and low memory requirement. It's capable to evaluate the SoH of various type of electric vehicles under different charging strategies. The short computing time and low memory needed for the SoH estimation also demonstrates its potential for practical use. Moreover, the clustering analysis is presented, which provides SoH comparison information of certain EV to that of EVs belonging to same type.en
dc.description.versionPeer revieweden
dc.format.extent14
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationXu, Z, Wang, J, Lund, P D & Zhang, Y 2021, ' Estimation and prediction of state of health of electric vehicle batteries using discrete incremental capacity analysis based on real driving data ', Energy, vol. 225, 120160 . https://doi.org/10.1016/j.energy.2021.120160en
dc.identifier.doi10.1016/j.energy.2021.120160en_US
dc.identifier.issn0360-5442
dc.identifier.issn1873-6785
dc.identifier.otherPURE UUID: 8c6d6642-f0cd-45c0-b1a9-7191da45bce7en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/8c6d6642-f0cd-45c0-b1a9-7191da45bce7en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85102109390&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/61163553/SCI_Xu_Estimation.Manuscript_Energy_revised.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/103239
dc.identifier.urnURN:NBN:fi:aalto-202103222517
dc.language.isoenen
dc.publisherElsevier
dc.relation.ispartofseriesEnergyen
dc.relation.ispartofseriesVolume 225en
dc.rightsopenAccessen
dc.subject.keywordClustering analysisen_US
dc.subject.keywordDiscrete incremental capacity analysisen_US
dc.subject.keywordElectric vehiclesen_US
dc.subject.keywordState of healthen_US
dc.titleEstimation and prediction of state of health of electric vehicle batteries using discrete incremental capacity analysis based on real driving dataen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionacceptedVersion

Files