Deep reinforcement learning for fuel cost optimization in district heating
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
Major/Subject
Mcode
Degree programme
Language
en
Pages
10
Series
Sustainable Cities and Society, Volume 99
Abstract
This study delves into the application of deep reinforcement learning (DRL) frameworks for optimizing setpoints in district heating systems, which experience hourly fluctuations in air temperature, customer demand, and fuel prices. The potential for energy conservation and cost reduction through setpoint optimization, involving adjustments to supply temperature and thermal energy storage utilization, is significant. However, the inherent nonlinear complexities of the system render conventional manual methods ineffective. To address these challenges, we introduce a novel learning framework with an expert knowledge module tailored for DRL techniques. The framework leverages system status information to facilitate learning. The training is performed by employing model-free DRL methods and a refined digital twin of the Espoo district heating system. The expert module, accounting for power plant capacities, ensures actionable directives aligned with operational feasibility. Empirical validation through comprehensive simulations demonstrates the efficacy of the proposed approach. Comparative analyses against manual methods and evolutionary techniques highlight the approach’s superior ability to curtail fuel costs. This study advances the understanding of DRL in district heating optimization, offering a promising avenue for enhanced energy efficiency and cost savings.Description
Keywords
Other note
Citation
Deng, J, Eklund, M, Sierla, S, Savolainen, J, Niemistö, H, Karhela, T & Vyatkin, V 2023, 'Deep reinforcement learning for fuel cost optimization in district heating', Sustainable Cities and Society, vol. 99, 104955. https://doi.org/10.1016/j.scs.2023.104955