Bolometric detection of Josephson radiation
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
6
Series
Nature Nanotechnology, Volume 19, issue 11, pp. 1613-1618
Abstract
One of the most promising approaches towards large-scale quantum computation uses devices based on many Josephson junctions. Yet, even today, open questions regarding the single junction remain unsolved, such as the detailed understanding of the quantum phase transitions, the coupling of the Josephson junction to the environment or how to improve the coherence of a superconducting qubit. Here we design and build an engineered on-chip reservoir connected to a Josephson junction that acts as an efficient bolometer for detecting the Josephson radiation under non-equilibrium, that is, biased conditions. The bolometer converts the a.c. Josephson current at microwave frequencies up to about 100 GHz into a temperature rise measured by d.c. thermometry. A circuit model based on realistic parameter values captures both the current–voltage characteristics and the measured power quantitatively. The present experiment demonstrates an efficient, wide-band, thermal detection scheme of microwave photons and provides a sensitive detector of Josephson dynamics beyond the standard conductance measurements.Description
Publisher Copyright: © The Author(s) 2024.
Keywords
Other note
Citation
Karimi, B, Steffensen, G O, Higginbotham, A P, Marcus, C M, Levy Yeyati, A & Pekola, J P 2024, 'Bolometric detection of Josephson radiation', Nature Nanotechnology, vol. 19, no. 11, pp. 1613-1618. https://doi.org/10.1038/s41565-024-01770-7