Bursty magnetic friction between polycrystalline thin films with domain walls

Loading...
Thumbnail Image

Access rights

openAccess
publishedVersion

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Major/Subject

Mcode

Degree programme

Language

en

Pages

Series

Physical Review B, Volume 100, issue 14, pp. 1-9

Abstract

Two magnets in relative motion interact through their dipolar fields, making individual magnetic moments dynamically adapt to the changes in the energy landscape and bringing about collective magnetization dynamics. Some of the energy of the system is irrevocably lost through various coupling mechanisms between the spin degrees of freedom and those of the underlying lattice, resulting in magnetic friction. In this work, we use micromagnetic simulations to study magnetic friction in a system of two thin ferromagnetic films containing quenched disorder mimicking a polycrystalline structure. We observe bursts of magnetic activity resulting from repeated domain wall pinning due to the disorder and subsequent depinning triggered by the dipolar interaction between the moving films. These domain wall jumps result in strong energy dissipation peaks. We study how the properties of the polycrystalline structure such as grain size and strength of the disorder, along with the driving velocity and the width of the films, affect the magnetization dynamics, average energy dissipation, and the statistical properties of the energy dissipation bursts.

Description

Keywords

Other note

Citation

Rissanen, I & Laurson, L 2019, 'Bursty magnetic friction between polycrystalline thin films with domain walls', Physical Review B, vol. 100, no. 14, 144408, pp. 1-9. https://doi.org/10.1103/PhysRevB.100.144408