Raman fingerprints and exciton-phonon coupling in 2D ternary layered semiconductor InSeBr
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Date
Major/Subject
Mcode
Degree programme
Language
en
Pages
5
Series
Applied Physics Letters, Volume 116, issue 16
Abstract
Compared to other two-dimensional (2D) crystals with single or binary elements, 2D ternary layered materials have unique physical properties for potential applications due to the stoichiometric variation and synergistic effect. Here, we report the first investigation of lattice dynamics and interactions between the exciton and lattice degrees of freedom in a 2D ternary semiconductor: indium-selenide-bromide (InSeBr). Via linear polarization resolved Raman scattering measurements, we uncover three Raman modes in few-layer InSeBr, including two A(1g) and one E-g modes. Moreover, through the combination of temperature-dependent Raman scattering experiments and theoretical calculations, we elucidate that few-layer InSeBr would harbor strong coupling between excitons and phonons. Our results may provide a firm basis for the development and engineering of potential optoelectronic devices based on 2D ternary semiconductors. Published under license by AIP Publishing.Description
Keywords
Other note
Citation
Hu, X, Du, L, Wang, Y, Lahtinen, J, Yao, L, Ren, Z & Sun, Z 2020, 'Raman fingerprints and exciton-phonon coupling in 2D ternary layered semiconductor InSeBr', Applied Physics Letters, vol. 116, no. 16, 163105. https://doi.org/10.1063/1.5143119