Tuning of spin-wave transmission and mode conversion in microscopic YIG waveguides with magnonic crystals
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
7
Series
Journal of Applied Physics, Volume 132, issue 19
Abstract
We report experimental results on spin-wave propagation, transmission gap tuning, and mode conversion in straight, curved, and Y-shaped yttrium iron garnet waveguides with magnonic crystals made of submicrometer-wide airgrooves. We observe forbidden frequency gaps with sizes up to 200 MHz in straight waveguides and narrowing of the gaps in curved and Y-shaped waveguides. The spin-wave transmission signal is strongly suppressed inside the gaps and remains high at allowed frequencies for all waveguide types. Using super-Nyquist sampling magneto-optical Kerr effect microscopy, we image symmetric and asymmetric spin-wave interference patterns, the self-focusing of propagating spin waves, and interconversions between width modes with different quantization numbers.Description
Keywords
Other note
Citation
Kuznetsov, N, Qin, H, Flajsman, L & van Dijken, S 2022, 'Tuning of spin-wave transmission and mode conversion in microscopic YIG waveguides with magnonic crystals', Journal of Applied Physics, vol. 132, no. 19, 193904. https://doi.org/10.1063/5.0123234