Exploiting the high affinity between cellulose nanofibrils and Aloe vera acemannan to develop elastic, crosslinker-free, all-polysaccharide hydrogels
Loading...
Access rights
openAccess
CC BY
CC BY
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Unless otherwise stated, all rights belong to the author. You may download, display and print this publication for Your own personal use. Commercial use is prohibited.
Date
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
13
Series
International Journal of Biological Macromolecules, Volume 304, issue Part 2
Abstract
Plant-based polymers hold promising prospects thanks to their bioactivity, diversity and versatility but they are currently overshadowed by synthetic and animal-derived materials, especially in biomedical applications. In this study, we developed an entirely plant-based hydrogel with improved mechanical performance based on TEMPO-oxidized cellulose nanofibrils (TCNFs) and the polysaccharide fraction (AVPF) extracted from Aloe vera L. (Aloe barbadensis Miller). The hydrogel blends exhibited excellent viscoelastic properties, minimal shrinkage and a significant increase in compressive modulus (ranging from 2.7 to 13.2 kPa versus 0.8 kPa in single component hydrogels), suggesting a synergistic effect. In-depth analysis of interaction and morphology of the hydrogels by QCM-D, AFM and SEM imaging showed that the observed synergy was the result of the complementary action between the two components and a uniform spatial distribution of the two networks. TCNFs built the rigid skeleton for the hydrogels, while AVPF physically adsorbed on TCNFs, forming a flexible matrix, allowing for better load transfer and dissipation in both static and dynamic loading, leading to a remarkable increase in moduli that surpassed the mere sum of the two individual components. In addition, the obtained hydrogels also showed little to no perceptible shrinkage after drying, unlike the single-component hydrogels made from the initial materials. These hydrogels offer a sustainable and ethical alternative to animal-derived materials, with great potential in biomedical fields.Description
Publisher Copyright: © 2025 The Authors
Other note
Citation
Huynh, N, Fliri, L, Valle-Delgado, J J & Österberg, M 2025, 'Exploiting the high affinity between cellulose nanofibrils and Aloe vera acemannan to develop elastic, crosslinker-free, all-polysaccharide hydrogels', International Journal of Biological Macromolecules, vol. 304, no. Part 2, 140853. https://doi.org/10.1016/j.ijbiomac.2025.140853