Atomic structure of metal-halide perovskites from first principles: The chicken-and-egg paradox of the organic-inorganic interaction
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Authors
Date
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
Series
Physical Review B, Volume 94, issue 4, pp. 1-12
Abstract
We have studied the prototype hybrid organic-inorganic perovskite CH3NH3PbI3 and its three close relatives, CH3NH3SnI3,CH3NH3PbCl3, and CsPbI3, using relativistic density function theory. The long-range van der Waals (vdW) interactions were incorporated into the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional using the Tkatchenko-Scheffler pairwise scheme. Our results reveal that hydrogen bonding, which is well described by the PBE functional, plays a decisive role for the structural parameters of these systems, including the position and orientation of the organic cation as well as the deformation of the inorganic framework. The magnitude of the inorganic-framework deformation depends sensitively on the orientation of the organic cation, and directly influences the stability of the hybrid perovskites. Our results suggest that the organic and the inorganic components complement each other; the low symmetry of the organic cation is the origin of the inorganic-framework deformation, which then AIDS the overall stabilization of the hybrid perovskite structure. This stabilization is indirectly affected by vdW interactions, which lead to smaller unit-cell volumes than in PBE and therefore modulate the interaction between the organic cation and the inorganic framework. The vdW-induced lattice-constant corrections are system dependent and lead to PBE+vdW lattice constants in good agreement with experiment. Further insight is gained by analyzing the vdW contributions. In all iodide-based hybrid perovskites, the interaction between the organic cation and the iodide anions provides the largest lattice-constant change, followed by iodine-iodine and the organic cation - heavy-metal cation interaction. These corrections follow an almost linear dependence on the lattice constant within the range considered in our study and are therefore approximately additive.Description
Keywords
Other note
Citation
Li, J & Rinke, P 2016, 'Atomic structure of metal-halide perovskites from first principles : The chicken-and-egg paradox of the organic-inorganic interaction', Physical Review B, vol. 94, no. 4, 045201, pp. 1-12. https://doi.org/10.1103/PhysRevB.94.045201