Defects in bilayer silica and graphene: common trends in diverse hexagonal two-dimensional systems

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorBjörkman, T.en_US
dc.contributor.authorKurasch, S.en_US
dc.contributor.authorLehtinen, O.en_US
dc.contributor.authorKotakoski, J.en_US
dc.contributor.authorYazyev, O.V.en_US
dc.contributor.authorSrivastava, A.en_US
dc.contributor.authorSkakalova, V.en_US
dc.contributor.authorSmet, J.H.en_US
dc.contributor.authorKaiser, U.en_US
dc.contributor.authorKrasheninnikov, A.V.en_US
dc.contributor.departmentDepartment of Applied Physicsen
dc.contributor.groupauthorElectronic Properties of Materialsen
dc.date.accessioned2017-05-11T09:09:24Z
dc.date.available2017-05-11T09:09:24Z
dc.date.issued2013en_US
dc.description.abstractBy combining first-principles and classical force field calculations with aberration-corrected high-resolution transmission electron microscopy experiments, we study the morphology and energetics of point and extended defects in hexagonal bilayer silica and make comparison to graphene, another two-dimensional (2D) system with hexagonal symmetry. We show that the motifs of isolated point defects in these 2D structures with otherwise very different properties are similar, and include Stone-Wales-type defects formed by structural unit rotations, flower defects and reconstructed double vacancies. The morphology and energetics of extended defects, such as grain boundaries have much in common as well. As both sp2-hybridised carbon and bilayer silica can also form amorphous structures, our results indicate that the morphology of imperfect 2D honeycomb lattices is largely governed by the underlying symmetry of the lattice.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationBjörkman, T, Kurasch, S, Lehtinen, O, Kotakoski, J, Yazyev, O V, Srivastava, A, Skakalova, V, Smet, J H, Kaiser, U & Krasheninnikov, A V 2013, ' Defects in bilayer silica and graphene: common trends in diverse hexagonal two-dimensional systems ', Scientific Reports, vol. 3, 3482, pp. 1-7 . https://doi.org/10.1038/srep03482en
dc.identifier.doi10.1038/srep03482en_US
dc.identifier.otherPURE UUID: d9cfbee5-7faa-4b0f-8c2e-ee220db833dden_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/d9cfbee5-7faa-4b0f-8c2e-ee220db833dden_US
dc.identifier.otherPURE LINK: http://www.nature.com/srep/2013/131211/srep03482/full/srep03482.htmlen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/12913960/srep03482.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/25898
dc.identifier.urnURN:NBN:fi:aalto-201705114273
dc.language.isoenen
dc.publisherNature Publishing Group
dc.relation.ispartofseriesScientific Reportsen
dc.relation.ispartofseriesVolume 3, pp. 1-7en
dc.rightsopenAccessen
dc.subject.keywordCondensed-matter physicsen_US
dc.subject.keywordElectronic structureen_US
dc.subject.keywordGrapheneen_US
dc.subject.keywordMechanical and structural properties and devicesen_US
dc.titleDefects in bilayer silica and graphene: common trends in diverse hexagonal two-dimensional systemsen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files