AdaBoost-Based Efficient Channel Estimation and Data Detection in One-Bit Massive MIMO

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorEsfandiari, Majdoddin
dc.contributor.authorVorobyov, Sergiy A.
dc.contributor.authorHeath, Robert W.
dc.contributor.departmentDepartment of Information and Communications Engineeringen
dc.contributor.groupauthorVisa Koivunen Groupen
dc.contributor.groupauthorSergiy Vorobyov Groupen
dc.contributor.organizationUniversity of California, San Diego
dc.date.accessioned2024-10-30T06:34:46Z
dc.date.available2024-10-30T06:34:46Z
dc.date.issued2024
dc.descriptionPublisher Copyright: Authors
dc.description.abstractThe use of one-bit analog-to-digital converter (ADC) has been considered as a viable alternative to high resolution counterparts in realizing and commercializing massive multiple-input multiple-output (MIMO) systems. However, the issue of discarding the amplitude information by one-bit quantizers has to be compensated. Thus, carefully tailored methods need to be developed for one-bit channel estimation and data detection as the conventional ones cannot be used. To address these issues, the problems of one-bit channel estimation and data detection for MIMO orthogonal frequency division multiplexing (OFDM) system that operates over uncorrelated frequency selective channels are investigated here. We first develop channel estimators that exploit Gaussian discriminant analysis (GDA) classifier and approximate versions of it as the so-called weak classifiers in an adaptive boosting (AdaBoost) approach. Particularly, the combination of the approximate GDA classifiers with AdaBoost offers the benefit of scalability with the linear order of computations, which is critical in massive MIMO-OFDM systems. We then take advantage of the same idea for proposing the data detectors. Numerical results validate the efficiency of the proposed channel estimators and data detectors compared to other methods. They show comparable/better performance to that of the state-of-the-art methods, but require dramatically lower computational complexities and run times.en
dc.description.versionPeer revieweden
dc.format.extent11
dc.format.mimetypeapplication/pdf
dc.identifier.citationEsfandiari, M, Vorobyov, S A & Heath, R W 2024, ' AdaBoost-Based Efficient Channel Estimation and Data Detection in One-Bit Massive MIMO ', IEEE Transactions on Wireless Communications, vol. 23, no. 10, pp. 13935-13945 . https://doi.org/10.1109/TWC.2024.3406782en
dc.identifier.doi10.1109/TWC.2024.3406782
dc.identifier.issn1536-1276
dc.identifier.otherPURE UUID: aa90e6a6-656c-448c-9e96-8de597349346
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/aa90e6a6-656c-448c-9e96-8de597349346
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85194882713&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/162857912/AdaBoost-Based_Efficient_Channel_Estimation_and_Data_Detection_in_One-Bit_Massive_MIMO.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/131459
dc.identifier.urnURN:NBN:fi:aalto-202410306974
dc.language.isoenen
dc.publisherIEEE
dc.relation.ispartofseriesIEEE Transactions on Wireless Communications
dc.relation.ispartofseriesVolume 23, issue 10, pp. 13935-13945
dc.rightsopenAccessen
dc.subject.keywordAdaBoost
dc.subject.keywordchannel estimation
dc.subject.keywordChannel estimation
dc.subject.keywordComputational complexity
dc.subject.keyworddata detection
dc.subject.keywordDetectors
dc.subject.keywordfrequency selective channel
dc.subject.keywordMassive MIMO
dc.subject.keywordmassive MIMO-OFDM
dc.subject.keywordOFDM
dc.subject.keywordOne-bit ADC
dc.subject.keywordTraining
dc.subject.keywordVectors
dc.titleAdaBoost-Based Efficient Channel Estimation and Data Detection in One-Bit Massive MIMOen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files