Quantum Langevin equation approach to electromagnetic energy transfer between dielectric bodies in an inhomogeneous environment
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
Series
Physical Review B, Volume 89, issue 13, pp. 1-13
Abstract
Near-field and resonance effects have a strong influence on nanoscale electromagnetic energy transfer, and detailed understanding of these effects is required for the design of new, optimized nano-optical devices. We provide a comprehensive microscopic view of electromagnetic energy transfer phenomena by introducing quantum Langevin heat baths as local noise sources in the equations of motion for the thermally fluctuating electric dipoles forming dielectric bodies. The theory is, in a sense, the microscopic generalization of the well-known fluctuational electrodynamics theory and thereby provides an alternative and conceptually simple way to calculate the local emission and absorption rates from the local Langevin bath currents. We apply the model to study energy transfer between silicon carbide nanoparticles located in a microcavity formed of two mirrors and next to a surface supporting propagating surface modes. The results show that the heat current between dipoles placed in a cavity oscillates as a function of their position and separation and can be enhanced by several orders of magnitude as compared to the free-space heat current with a similar interparticle distance. The predicted enhancement can be viewed as a many-body generalization of the well-known cavity Purcell effect. Similar effects are also observed in the interparticle heat transfer between dipoles located next to a surface of a polar material supporting surface phonon polaritons.Description
Keywords
Other note
Citation
Sääskilahti, K, Oksanen, J & Tulkki, J 2014, 'Quantum Langevin equation approach to electromagnetic energy transfer between dielectric bodies in an inhomogeneous environment', Physical Review B, vol. 89, no. 13, 134301, pp. 1-13. https://doi.org/10.1103/PhysRevB.89.134301