Structure from Motion-Based Mapping for Autonomous Driving: Practice and Experience
Loading...
Access rights
openAccess
acceptedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
Major/Subject
Mcode
Degree programme
Language
en
Pages
25
Series
ACM Transactions on the Internet of Things, Volume 5, issue 1
Abstract
Accurate and up-to-date 3D maps, often represented as point clouds, are crucial for autonomous vehicles. Crowd-sourcing has emerged as a low-cost and scalable approach for collecting mapping data utilizing widely available dashcams and other sensing devices. However, it is still a non-trivial task to utilize crowdsourced data, such as dashcam images and video, to efficiently create or update high-quality point clouds using technologies like Structure from Motion (SfM). This study assesses and compares different image matching options available in open-source SfM software, analyzing their applicability and limitations for mapping urban scenes in different practical scenarios. Furthermore, the study analyzes the impact of various camera setups (i.e., the number of cameras and their placement) and weather conditions on the quality of the generated 3D point clouds in terms of completeness and accuracy. Based on these analyses, our study provides guidelines for creating more accurate point clouds.Description
Keywords
Other note
Citation
Zhanabatyrova, A, Souza Leite, C & Xiao, Y 2024, 'Structure from Motion-Based Mapping for Autonomous Driving: Practice and Experience', ACM Transactions on the Internet of Things, vol. 5, no. 1, 6. https://doi.org/10.1145/3631533