Probabilistic methods for pose-invariant recognition in computer vision

Loading...
Thumbnail Image

URL

Journal Title

Journal ISSN

Volume Title

Doctoral thesis (monograph)
Checking the digitized thesis and permission for publishing
Instructions for the author

Major/Subject

Mcode

Degree programme

Language

en

Pages

129

Series

Helsinki University of Technology Laboratory of Computational Engineering publications. Report B, 67

Abstract

This thesis is concerned with two central themes in computer vision, the properties of oriented quadrature filters, and methods for implementing rotation invariance in an object matching and recognition system. Objects are modeled as combinations of local features, and human faces are used as the reference object class. The topics covered include optimal design of filter banks for feature detection and object recognition, modeling of pose effects in filter responses and the construction of probability-based pose-invariant object matching and recognition systems employing oriented filters. Gabor filters have been derived as information-theoretically optimal bandpass filters, simultaneously maximizing the localization capability in space and spatial-frequency domains. Steerable oriented filters have been developed as a tool for reducing the amount of computation required in rotation invariant systems. In this work, the framework of steerable filters is applied to Gabor-type filters and novel analytical derivations for the required steering equations for them are presented. Gabor filters and some related filters are experimentally shown to be approximately steerable with low steering error, given suitable filter shape parameters. The effects of filter shape parameters in feature localization and object recognition are also studied using a complete feature matching system. A novel approach for modeling the pose variation of features due to depth rotations is introduced. Instead of manifold learning methods, the use synthetic data makes it possible to apply simpler regression modeling methods. The use of synthetic data in learning the pose models for local features is a central contribution of the work. The object matching methods considered in the work are based on probabilistic reasoning. The required object likelihood functions are constructed using feature similarity measures, and random sampling methods are applied for finding the modes of high probability in the likelihood probability distribution functions. The Population Monte Carlo algorithm is shown to solve successfully pose estimation problems in which simple Metropolis and Gibbs sampling methods give unsatisfactory performance.

Tämä väitöskirja käsittelee kahta keskeistä tietokonenäön osa-aluetta, signaalin suunnalle herkkien kvadratuurisuodinten ominaisuuksia, ja näkymäsuunnasta riippumattomia menetelmiä kohteiden sovittamiseksi malliin ja tunnistamiseksi. Kohteet mallinnetaan paikallisten piirteiden yhdistelminä, ja esimerkkikohdeluokkana käytetään ihmiskasvoja. Työssä käsitellään suodinpankin optimaalista suunnittelua piirteiden havaitsemisen ja kohteen tunnistuksen kannalta, näkymäsuunnan piirteissä aiheuttamien ilmiöiden mallintamista sekä edellisen kaltaisia piirteitä käyttävän todennäköisyyspohjaisen, näkymäsuunnasta riippumattomaan havaitsemiseen kykenevän kohteidentunnistusjärjestelmän toteutusta. Gabor-suotimet ovat informaatioteoreettisista lähtökohdista johdettuja, aika- ja taajuustason paikallistamiskyvyltään optimaalisia kaistanpäästösuotimia. Nk. ohjattavat (steerable) suuntaherkät suotimet on kehitetty vähentämään laskennan määrää tasorotaatioille invarianteissa järjestelmissä. Työssä laajennetaan ohjattavien suodinten teoriaa Gabor-suotimiin ja esitetään Gabor-suodinten ohjaukseen vaadittavien approksimointiyhtälöiden johtaminen analyyttisesti. Kokeellisesti näytetään, että Gabor-suotimet ja eräät niitä muistuttavat suotimet ovat sopivilla muotoparametrien arvoilla likimäärin ohjattavia. Lisäksi tutkitaan muotoparametrien vaikutusta piirteiden havaittavuuteen sekä kohteen tunnistamiseen kokonaista kohteidentunnistusjärjestelmää käyttäen. Piirteiden näkymäsuunnasta johtuvaa vaihtelua mallinnetaan suoraviivaisesti regressiomenetelmillä. Näiden käyttäminen monisto-oppimismenetelmien (manifold learning methods) sijaan on mahdollista, koska malli muodostetaan synteettisen datan avulla. Työn keskeisiä kontribuutioita on synteettisen datan käyttäminen paikallisten piirteiden näkymämallien oppimisessa. Työssä käsiteltävät mallinsovitusmenetelmät perustuvat todennäköisyyspohjaiseen päättelyyn. Tarvittavat kohteen uskottavuusfunktiot muodostetaan piirteiden samankaltaisuusmitoista, ja uskottavuusfunktion suuren todennäköisyysmassan keskittymät löydetään satunnaisotantamenetelmillä. Population Monte Carlo -algoritmin osoitetaan ratkaisevan onnistuneesti asennonestimointiongelmia, joissa Metropolis- ja Gibbs-otantamenetelmät antavat epätyydyttäviä tuloksia.

Description

Other note

Citation

Permanent link to this item

https://urn.fi/urn:nbn:fi:tkk-010631