Generative adversarial network-based glottal waveform model for statistical parametric speech synthesis

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorBollepalli, Bajibabuen_US
dc.contributor.authorJuvela, Laurien_US
dc.contributor.authorAlku, Paavoen_US
dc.contributor.departmentDepartment of Signal Processing and Acousticsen
dc.contributor.groupauthorSpeech Communication Technologyen
dc.date.accessioned2017-11-21T13:39:20Z
dc.date.available2017-11-21T13:39:20Z
dc.date.issued2017-08en_US
dc.description.abstractRecent studies have shown that text-to-speech synthesis quality can be improved by using glottal vocoding. This refers to vocoders that parameterize speech into two parts, the glottal excitation and vocal tract, that occur in the human speech production apparatus. Current glottal vocoders generate the glottal excitation waveform by using deep neural networks (DNNs). However, the squared error-based training of the present glottal excitation models is limited to generating conditional average waveforms, which fails to capture the stochastic variation of the waveforms. As a result, shaped noise is added as post-processing. In this study, we propose a new method for predicting glottal waveforms by generative adversarial networks (GANs). GANs are generative models that aim to embed the data distribution in a latent space, enabling generation of new instances very similar to the original by randomly sampling the latent distribution. The glottal pulses generated by GANs show a stochastic component similar to natural glottal pulses. In our experiments, we compare synthetic speech generated using glottal waveforms produced by both DNNs and GANs. The results show that the newly proposed GANs achieve synthesis quality comparable to that of widely-used DNNs, without using an additive noise component.en
dc.description.versionPeer revieweden
dc.format.extent5
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationBollepalli, B, Juvela, L & Alku, P 2017, Generative adversarial network-based glottal waveform model for statistical parametric speech synthesis . in Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH . vol. 2017-August, Interspeech: Annual Conference of the International Speech Communication Association, International Speech Communication Association (ISCA), pp. 3394-3398, Interspeech, Stockholm, Sweden, 20/08/2017 . https://doi.org/10.21437/Interspeech.2017-1288en
dc.identifier.doi10.21437/Interspeech.2017-1288en_US
dc.identifier.isbn978-1-5108-4876-4
dc.identifier.issn1990-9772
dc.identifier.otherPURE UUID: d46f19a6-879f-41b9-9142-032ba6e624aben_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/d46f19a6-879f-41b9-9142-032ba6e624aben_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/15742197/bollepalli_interspeech1288.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/28868
dc.identifier.urnURN:NBN:fi:aalto-201711217689
dc.language.isoenen
dc.relation.ispartofInterspeechen
dc.relation.ispartofseriesProceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECHen
dc.relation.ispartofseriesVolume 2017-August, pp. 3394-3398en
dc.relation.ispartofseriesInterspeech: Annual Conference of the International Speech Communication Associationen
dc.rightsopenAccessen
dc.rights.copyright© 2017 ISCA. This article was originally published in the Proceedings of Interspeech 2017: Bollepalli, B., Juvela, L., Alku, P. (2017) Generative Adversarial Network-Based Glottal Waveform Model for Statistical Parametric Speech Synthesis. Proc. Interspeech 2017, 3394-3398, DOI: 10.21437/Interspeech.2017-1288.en_US
dc.subject.keywordGlottal souce modellingen_US
dc.subject.keywordGANen_US
dc.subject.keywordTTSen_US
dc.subject.keywordDNNen_US
dc.titleGenerative adversarial network-based glottal waveform model for statistical parametric speech synthesisen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionpublishedVersion

Files