Chemical Valorization of Textile Waste: Advancing Sustainable Recycling for a Circular Economy
Loading...
Access rights
openAccess
CC BY
CC BY
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A2 Katsausartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Unless otherwise stated, all rights belong to the author. You may download, display and print this publication for Your own personal use. Commercial use is prohibited.
Date
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
26
Series
ACS Omega, Volume 10, issue 12, pp. 11697–11722
Abstract
As textile production continues to grow worldwide, managing the mounting waste generated by this industry is becoming an urgent environmental concern. Globally, over 92 million tons of textile waste are produced annually, much of which is incinerated or disposed of in landfills, contributing to greenhouse gas emissions, soil and water contamination, and ecosystem harm. This review explores how chemical and biotechnological methods, such as acid hydrolysis (achieving up to 70% glucose recovery) and enzymatic recycling (reducing energy consumption by approximately 20% compared to conventional methods), can transform textile waste into valuable resources, fostering a shift toward a circular economy that minimizes reliance on virgin materials. However, the diverse nature of textile waste─particularly in mixed fibers and materials treated with various finishes and additives─adds complexity to recycling processes, often necessitating specific pretreatment steps to ensure both efficiency and economic viability. Scalable solutions such as advanced solvent recovery systems, optimized pretreatment techniques, and fluidized-bed pyrolysis (which can increase bio-oil yields by up to 25% compared to fixed-bed reactors) play crucial roles in making textile recycling more sustainable and adaptable at an industrial scale. By addressing these technical and financial challenges, the industry can improve the efficiency and sustainability of textile recycling practices, reducing waste and contributing to environmental resilience. This review also suggests several future directions to enhance scalability and compatibility with environmental goals, highlighting the potential for these technologies to create valuable secondary materials and support greener practices in textile waste management. Through continued innovation and a commitment to sustainable practices, the textile industry can better balance resource recovery with economic feasibility, unlocking substantial opportunities to mitigate environmental impact and support a more resource-efficient, sustainable future.Description
Keywords
Other note
Citation
Ghosh, J, Repon, M R, Rupanty, N S, Asif, T R, Tamjid, M I & Reukov, V 2025, 'Chemical Valorization of Textile Waste: Advancing Sustainable Recycling for a Circular Economy', ACS Omega, vol. 10, no. 12, pp. 11697–11722. https://doi.org/10.1021/acsomega.4c10616