Mechanism of Thermal Atomic Layer Etch of W Metal Using Sequential Oxidation and Chlorination: A First-Principles Study

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorKondati Natarajan, Sureshen_US
dc.contributor.authorNolan, Michaelen_US
dc.contributor.authorTheofanis, Patricken_US
dc.contributor.authorMokhtarzadeh, Charlesen_US
dc.contributor.authorClendenning, Scott B.en_US
dc.contributor.departmentDepartment of Electrical Engineering and Automationen
dc.contributor.groupauthorMicrosystems Technologyen
dc.contributor.organizationUniversity College Corken_US
dc.contributor.organizationIntel Labsen_US
dc.date.accessioned2020-11-30T08:16:51Z
dc.date.available2020-11-30T08:16:51Z
dc.date.issued2020-08-12en_US
dc.description.abstractThermal atomic layer etch (ALE) of W metal can be achieved by sequential self-limiting oxidation and chlorination reactions at elevated temperatures. In this paper, we analyze the reaction mechanisms of W ALE using the first-principles simulation. We show that oxidizing agents such as O2, O3, and N2O can be used to produce a WOx surface layer in the first step of an ALE process with ozone being the most reactive. While the oxidation pulse on clean W is very exergonic, our study suggests that runaway oxidation of W is not thermodynamically favorable. In the second ALE pulse, WCl6 and Cl2 remove the oxidized surface W atoms by the formation of volatile tungsten oxychloride (WxOyClz) species. In this pulse, each adsorbed WCl6 molecule was found to remove one surface W atom with a moderate energy cost. Our calculations further show that the desorption of the additional etch products is endothermic by up to 4.7 eV. Our findings are consistent with the high temperatures needed to produce ALE in experiments. In total, our quantum chemical calculations have identified the lowest energy pathways for ALE of tungsten metal along with the most likely etch products, and these findings may help guide the development of improved etch reagents.en
dc.description.versionPeer revieweden
dc.format.extent11
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationKondati Natarajan, S, Nolan, M, Theofanis, P, Mokhtarzadeh, C & Clendenning, S B 2020, 'Mechanism of Thermal Atomic Layer Etch of W Metal Using Sequential Oxidation and Chlorination : A First-Principles Study', ACS applied materials & interfaces, vol. 12, no. 32, pp. 36670-36680. https://doi.org/10.1021/acsami.0c06628en
dc.identifier.doi10.1021/acsami.0c06628en_US
dc.identifier.issn1944-8244
dc.identifier.issn1944-8252
dc.identifier.otherPURE UUID: 8eb11d34-2de4-48c4-82b3-d591600123e8en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/8eb11d34-2de4-48c4-82b3-d591600123e8en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85089710402&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/53474284/Natarajan_Mechanism_of_thermal_ACS.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/61752
dc.identifier.urnURN:NBN:fi:aalto-2020113020597
dc.language.isoenen
dc.publisherAmerican Chemical Society
dc.relation.ispartofseriesACS applied materials & interfacesen
dc.relation.ispartofseriesVolume 12, issue 32, pp. 36670-36680en
dc.rightsopenAccessen
dc.subject.keywordAtomic layer etchingen_US
dc.subject.keywordAtomistic simulationsen_US
dc.subject.keywordDensity functional theoryen_US
dc.subject.keywordFirst principlesen_US
dc.subject.keywordSelf-limiting reactionen_US
dc.subject.keywordTransistor contactsen_US
dc.titleMechanism of Thermal Atomic Layer Etch of W Metal Using Sequential Oxidation and Chlorination: A First-Principles Studyen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files