Polarization time and length for random optical beams

Loading...
Thumbnail Image

Access rights

openAccess
publishedVersion

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Major/Subject

Mcode

Degree programme

Language

en

Pages

6
1-6

Series

PHYSICAL REVIEW A, Volume 78, issue 3

Abstract

We investigate the dynamics of the instantaneous polarization state of stationary, partially polarized random electromagnetic beamlike fields. An intensity-normalized correlation function of the instantaneous Poincaré vector is introduced for the characterization of the time evolution of the polarization state. This polarization correlation function enables us to define a polarization time and a polarization length over which the polarization state remains substantially unchanged. In the case of Gaussian statistics, the polarization correlation function is shown to assume a simple form in terms of the parameters employed to characterize partial coherence and partial polarization of electromagnetic fields. The formalism is demonstrated for a partially polarized, temporally Gaussian-correlated beam, and black-body radiation. The results are expected to find a range of applications in investigations of phenomena where polarization fluctuations of light play an important role.

Description

Other note

Citation

Setälä , T , Shevchenko , A , Kaivola , M & Friberg , A 2008 , ' Polarization time and length for random optical beams ' , Physical Review A , vol. 78 , no. 3 , 033817 , pp. 1-6 . https://doi.org/10.1103/PhysRevA.78.033817