Improved Salp-Swarm Optimizer and Accurate Forecasting Model for Dynamic Economic Dispatch in Sustainable Power Systems

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorMahmoud, Kararen_US
dc.contributor.authorAbdel-Nasser, Mohameden_US
dc.contributor.authorMustafa, Emanen_US
dc.contributor.authorAli, Ziad M.en_US
dc.contributor.departmentDepartment of Electrical Engineering and Automationen
dc.contributor.groupauthorPower Systems and High Voltage Engineeringen
dc.contributor.organizationAswan Universityen_US
dc.contributor.organizationPrince Sattam Bin Abdulaziz Universityen_US
dc.date.accessioned2020-02-03T09:03:19Z
dc.date.available2020-02-03T09:03:19Z
dc.date.issued2020-01-12en_US
dc.description.abstractWorldwide, the penetrations of photovoltaic (PV) and energy storage systems are increased in power systems. Due to the intermittent nature of PVs, these sustainable power systems require efficient managing and prediction techniques to ensure economic and secure operations. In this paper, a comprehensive dynamic economic dispatch (DED) framework is proposed that includes fuel-based generators, PV, and energy storage devices in sustainable power systems, considering various profiles of PV (clear and cloudy). The DED model aims at minimizing the total fuel cost of power generation stations while considering various constraints of generation stations, the power system, PV, and energy storage systems. An improved optimization algorithm is proposed to solve the DED optimization problem for a sustainable power system. In particular, a mutation mechanism is combined with a salp–swarm algorithm (SSA) to enhance the exploitation of the search space so that it provides a better population to get the optimal global solution. In addition, we propose a DED handling strategy that involves the use of PV power and load forecasting models based on deep learning techniques. The improved SSA algorithm is validated by ten benchmark problems and applied to the DED optimization problem for a hybrid power system that includes 40 thermal generators and PV and energy storage systems. The experimental results demonstrate the efficiency of the proposed framework with different penetrations of PV.en
dc.description.versionPeer revieweden
dc.format.extent21
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationMahmoud, K, Abdel-Nasser, M, Mustafa, E & Ali, Z M 2020, 'Improved Salp-Swarm Optimizer and Accurate Forecasting Model for Dynamic Economic Dispatch in Sustainable Power Systems', Sustainability, vol. 12, no. 2, 576. https://doi.org/10.3390/su12020576en
dc.identifier.doi10.3390/su12020576en_US
dc.identifier.issn2071-1050
dc.identifier.otherPURE UUID: e31e7513-fef9-40cf-9b84-cee15e65173den_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/e31e7513-fef9-40cf-9b84-cee15e65173den_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85079696768&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/40643279/ELEC_Mahmoud_etal_Improved_Salp_Swarm_Sustainability_12_2_576_finalpublishedversion.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/42962
dc.identifier.urnURN:NBN:fi:aalto-202002032042
dc.language.isoenen
dc.publisherMDPI AG
dc.relation.ispartofseriesSustainabilityen
dc.relation.ispartofseriesVolume 12, issue 2en
dc.rightsopenAccessen
dc.subject.keywordDynamic economic dispatchen_US
dc.subject.keywordSustainable power systemsen_US
dc.subject.keywordImproved salp–swarm optimizeren_US
dc.subject.keywordForecastingen_US
dc.subject.keywordDeep learningen_US
dc.titleImproved Salp-Swarm Optimizer and Accurate Forecasting Model for Dynamic Economic Dispatch in Sustainable Power Systemsen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files