Anomaly Detection Using Generative Models and Sum-Product Networks in Mammography Scans

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorDietrichstein, Marcen_US
dc.contributor.authorMajor, Daviden_US
dc.contributor.authorTrapp, Martinen_US
dc.contributor.authorWimmer, Mariaen_US
dc.contributor.authorLenis, Dimitriosen_US
dc.contributor.authorWinter, Philipen_US
dc.contributor.authorBerg, Astriden_US
dc.contributor.authorNeubauer, Theresaen_US
dc.contributor.authorBühler, Katjaen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.editorMukhopadhyay, Anirbanen_US
dc.contributor.editorOksuz, Ilkayen_US
dc.contributor.editorEngelhardt, Sandyen_US
dc.contributor.editorZhu, Dajiangen_US
dc.contributor.editorYuan, Yixuanen_US
dc.contributor.groupauthorProfessorship Solin A.en
dc.contributor.organizationVRVis Zentrum für Virtual Reality und Visualisierungen_US
dc.date.accessioned2022-12-22T09:43:50Z
dc.date.available2022-12-22T09:43:50Z
dc.date.issued2022en_US
dc.descriptionFunding Information: VRVis is funded by BMK, BMDW, Styria, SFG, Tyrol and Vienna Business Agency in the scope of COMET-Competence Centers for Excellent Technologies (879730) which is managed by FFG. Thanks go to AGFA HealthCare, project partner of VRVis, for providing valuable input. Martin Trapp acknowledges funding from the Academy of Finland (347279).
dc.description.abstractUnsupervised anomaly detection models that are trained solely by healthy data, have gained importance in recent years, as the annotation of medical data is a tedious task. Autoencoders and generative adversarial networks are the standard anomaly detection methods that are utilized to learn the data distribution. However, they fall short when it comes to inference and evaluation of the likelihood of test samples. We propose a novel combination of generative models and a probabilistic graphical model. After encoding image samples by autoencoders, the distribution of data is modeled by Random and Tensorized Sum-Product Networks ensuring exact and efficient inference at test time. We evaluate different autoencoder architectures in combination with Random and Tensorized Sum-Product Networks on mammography images using patch-wise processing and observe superior performance over utilizing the models standalone and state-of-the-art in anomaly detection for medical data.en
dc.description.versionPeer revieweden
dc.format.extent10
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationDietrichstein, M, Major, D, Trapp, M, Wimmer, M, Lenis, D, Winter, P, Berg, A, Neubauer, T & Bühler, K 2022, Anomaly Detection Using Generative Models and Sum-Product Networks in Mammography Scans. in A Mukhopadhyay, I Oksuz, S Engelhardt, D Zhu & Y Yuan (eds), Deep Generative Models - 2nd MICCAI Workshop, DGM4MICCAI 2022, Held in Conjunction with MICCAI 2022, Proceedings. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 13609 LNCS, Springer, pp. 77-86, Workshop on Deep Generative Models for Medical Image Computing and Computer Assisted Intervention, Singapore, Singapore, 22/09/2022. https://doi.org/10.1007/978-3-031-18576-2_8en
dc.identifier.doi10.1007/978-3-031-18576-2_8en_US
dc.identifier.isbn978-3-031-18575-5
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.otherPURE UUID: 47558ee7-b8d8-415b-b561-230812a9fad8en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/47558ee7-b8d8-415b-b561-230812a9fad8en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85141753362&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/94822044/Anomaly_Detection_Using_Generative_Models_and_Sum_Product_Networks_in_Mammography_Scans.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/118491
dc.identifier.urnURN:NBN:fi:aalto-202212227229
dc.language.isoenen
dc.relation.ispartofWorkshop on Deep Generative Models for Medical Image Computing and Computer Assisted Interventionen
dc.relation.ispartofseriesDeep Generative Models - 2nd MICCAI Workshop, DGM4MICCAI 2022, Held in Conjunction with MICCAI 2022, Proceedingsen
dc.relation.ispartofseriespp. 77-86en
dc.relation.ispartofseriesLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) ; Volume 13609 LNCSen
dc.rightsopenAccessen
dc.subject.keywordAnomaly detectionen_US
dc.subject.keywordGenerative modelsen_US
dc.subject.keywordMammographyen_US
dc.subject.keywordSum-product networksen_US
dc.titleAnomaly Detection Using Generative Models and Sum-Product Networks in Mammography Scansen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionacceptedVersion

Files