Honeycomb and triangular domain wall networks in heteroepitaxial systems

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorElder, Ken R.en_US
dc.contributor.authorChen, Z.en_US
dc.contributor.authorElder, K. L Men_US
dc.contributor.authorHirvonen, Petrien_US
dc.contributor.authorMkhonta, S. K.en_US
dc.contributor.authorYing, S. C.en_US
dc.contributor.authorGranato, E.en_US
dc.contributor.authorHuang, Zhi Fengen_US
dc.contributor.authorAla-Nissilä, Tapioen_US
dc.contributor.departmentDepartment of Applied Physicsen
dc.contributor.groupauthorMultiscale Statistical and Quantum Physicsen
dc.contributor.organizationOakland Universityen_US
dc.contributor.organizationWayne State Universityen_US
dc.contributor.organizationBrown Universityen_US
dc.contributor.organizationInstituto Nacional de Pesquisas Espaciaisen_US
dc.date.accessioned2017-01-19T11:23:04Z
dc.date.embargoinfo:eu-repo/date/embargoEnd/2017-05-02en_US
dc.date.issued2016-05-07en_US
dc.description.abstractA comprehensive study is presented for the influence of misfit strain, adhesion strength, and lattice symmetry on the complex Moiré patterns that form in ultrathin films of honeycomb symmetry adsorbed on compact triangular or honeycomb substrates. The method used is based on a complex Ginzburg-Landau model of the film that incorporates elastic strain energy and dislocations. The results indicate that different symmetries of the heteroepitaxial systems lead to distinct types of domain wall networks and phase transitions among various surface Moiré patterns and superstructures. More specifically, the results show a dramatic difference between the phase diagrams that emerge when a honeycomb film is adsorbed on substrates of honeycomb versus triangular symmetry. It is also shown that in the small deformation limit, the complex Ginzburg-Landau model reduces to a two-dimensional sine-Gordon free energy form. This free energy can be solved exactly for one dimensional patterns and reveals the role of domains walls and their crossings in determining the nature of the phase diagrams.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationElder, K R, Chen, Z, Elder, K L M, Hirvonen, P, Mkhonta, S K, Ying, S C, Granato, E, Huang, Z F & Ala-Nissilä, T 2016, ' Honeycomb and triangular domain wall networks in heteroepitaxial systems ', Journal of Chemical Physics, vol. 144, no. 17, 174703, pp. 1-11 . https://doi.org/10.1063/1.4948370en
dc.identifier.doi10.1063/1.4948370en_US
dc.identifier.issn0021-9606
dc.identifier.issn1089-7690
dc.identifier.otherPURE UUID: f3616a5e-870c-4140-8d5b-b2824e5fc454en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/f3616a5e-870c-4140-8d5b-b2824e5fc454en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=84968816772&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/6582772/1.4948370.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/24378
dc.identifier.urnURN:NBN:fi:aalto-201701191325
dc.language.isoenen
dc.publisherAmerican Institute of Physics
dc.relation.ispartofseriesJournal of Chemical Physicsen
dc.relation.ispartofseriesVolume 144, issue 17, pp. 1-11en
dc.rightsopenAccessen
dc.titleHoneycomb and triangular domain wall networks in heteroepitaxial systemsen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files