Honeycomb and triangular domain wall networks in heteroepitaxial systems

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorElder, Ken R.
dc.contributor.authorChen, Z.
dc.contributor.authorElder, K. L M
dc.contributor.authorHirvonen, Petri
dc.contributor.authorMkhonta, S. K.
dc.contributor.authorYing, S. C.
dc.contributor.authorGranato, E.
dc.contributor.authorHuang, Zhi Feng
dc.contributor.authorAla-Nissilä, Tapio
dc.contributor.departmentOakland University
dc.contributor.departmentDepartment of Applied Physics
dc.contributor.departmentWayne State University
dc.contributor.departmentBrown University
dc.contributor.departmentInstituto Nacional de Pesquisas Espaciais
dc.date.accessioned2017-01-19T11:23:04Z
dc.date.embargoinfo:eu-repo/date/embargoEnd/2017-05-02
dc.date.issued2016-05-07
dc.description.abstractA comprehensive study is presented for the influence of misfit strain, adhesion strength, and lattice symmetry on the complex Moiré patterns that form in ultrathin films of honeycomb symmetry adsorbed on compact triangular or honeycomb substrates. The method used is based on a complex Ginzburg-Landau model of the film that incorporates elastic strain energy and dislocations. The results indicate that different symmetries of the heteroepitaxial systems lead to distinct types of domain wall networks and phase transitions among various surface Moiré patterns and superstructures. More specifically, the results show a dramatic difference between the phase diagrams that emerge when a honeycomb film is adsorbed on substrates of honeycomb versus triangular symmetry. It is also shown that in the small deformation limit, the complex Ginzburg-Landau model reduces to a two-dimensional sine-Gordon free energy form. This free energy can be solved exactly for one dimensional patterns and reveals the role of domains walls and their crossings in determining the nature of the phase diagrams.en
dc.description.versionPeer revieweden
dc.format.extent1-11
dc.format.mimetypeapplication/pdf
dc.identifier.citationElder , K R , Chen , Z , Elder , K L M , Hirvonen , P , Mkhonta , S K , Ying , S C , Granato , E , Huang , Z F & Ala-Nissilä , T 2016 , ' Honeycomb and triangular domain wall networks in heteroepitaxial systems ' , Journal of Chemical Physics , vol. 144 , no. 17 , 174703 , pp. 1-11 . https://doi.org/10.1063/1.4948370en
dc.identifier.doi10.1063/1.4948370
dc.identifier.issn0021-9606
dc.identifier.issn1089-7690
dc.identifier.otherPURE UUID: f3616a5e-870c-4140-8d5b-b2824e5fc454
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/f3616a5e-870c-4140-8d5b-b2824e5fc454
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=84968816772&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/6582772/1.4948370.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/24378
dc.identifier.urnURN:NBN:fi:aalto-201701191325
dc.language.isoenen
dc.relation.ispartofseriesJournal of Chemical Physicsen
dc.relation.ispartofseriesVolume 144, issue 17en
dc.rightsopenAccessen
dc.titleHoneycomb and triangular domain wall networks in heteroepitaxial systemsen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
Files