Maximum likelihood estimation and uncertainty quantification for gaussian process approximation of deterministic functions

Loading...
Thumbnail Image

Access rights

openAccess
publishedVersion

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2020

Major/Subject

Mcode

Degree programme

Language

en

Pages

33

Series

SIAM/ASA Journal on Uncertainty Quantification, Volume 8, issue 3, pp. 926-958

Abstract

Despite the ubiquity of the Gaussian process regression model, few theoretical results are available that account for the fact that parameters of the covariance kernel typically need to be estimated from the data set. This article provides one of the first theoretical analyses in the context of Gaussian process regression with a noiseless data set. Specifically, we consider the scenario where the scale parameter of a Sobolev kernel (such as a Matern kernel) is estimated by maximum likelihood. We show that the maximum likelihood estimation of the scale parameter alone provides significant adaptation against misspecification of the Gaussian process model in the sense that the model can become "slowly" overconfident at worst, regardless of the difference between the smoothness of the data-generating function and that expected by the model. The analysis is based on a combination of techniques from nonparametric regression and scattered data interpolation. Empirical results are provided in support of the theoretical findings.

Description

Keywords

Bayesian cubature, Credible sets, Model misspecification, Nonparametric regression, Scattered data approximation

Other note

Citation

Karvonen, T, Wynne, G, Tronarp, F, Oates, C & Särkkä, S 2020, ' Maximum likelihood estimation and uncertainty quantification for gaussian process approximation of deterministic functions ', SIAM/ASA Journal on Uncertainty Quantification, vol. 8, no. 3, pp. 926-958 . https://doi.org/10.1137/20M1315968