A machine learning method for the prediction of ship motion trajectories in real operational conditions
Loading...
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Date
2023-09-01
Major/Subject
Mcode
Degree programme
Language
en
Pages
24
Series
Ocean Engineering, Volume 283
Abstract
This paper presents a big data analytics method for the proactive mitigation of grounding risk. The model encompasses the dynamics of ship motion trajectories while accounting for kinematic uncertainties in real operational conditions. The approach combines K-means and DB-SCAN (Density-Based Spatial Clustering of Applications with Noise) big data clustering methods with Principal Component Analysis (PCA) to group environmental factors. A Multiple-Output Gaussian Process Regression (MOGPR) method is consequently used to predict selected ship motion dynamics. Ship sway is defined as the deviation between a ship and her motion trajectory centreline. Surge accelerations are used to idealise the time-varying manoeuvring of ships in various routes. Operational conditions are simulated by Automatic Identification System (AIS), General Bathymetric Chart of the Oceans (GEBCO), and nowcast hydro-meteorological data records. A Dynamic Time Warping (DTW) method is adopted to identify ship centre-line trajectories along selected paths. The machine learning algorithm is applied for ship motion predictions of Ro-Pax ships operating between two ports in the Gulf of Finland. Ship motion dynamics are visualised along the ship’s route using a Gaussian Progress Regression (GPR) flow method. Results indicate that the present methodology may assist with predicting the probabilistic distribution of ship dynamics (speed, sway distance, drift angle, and surge accelerations) and grounding risk along selected ship routes.Description
| openaire: EC/H2020/814753/EU//FLARE
Keywords
Ship dynamics, Motions, Machine learning, Ship grounding, Safety in operations
Other note
Citation
Zhang, M, Kujala, P, Musharraf, M, Zhang, J & Hirdaris, S 2023, ' A machine learning method for the prediction of ship motion trajectories in real operational conditions ', Ocean Engineering, vol. 283, 114905 . https://doi.org/10.1016/j.oceaneng.2023.114905