Bayesian networks, influence diagrams, and games in simulation metamodeling

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.advisorVirtanen, Kai, Dr.
dc.contributor.authorPoropudas, Jirka
dc.contributor.departmentMatematiikan ja systeemianalyysin laitosfi
dc.contributor.departmentDepartment of Mathematics and Systems Analysisen
dc.contributor.schoolPerustieteiden korkeakoulufi
dc.contributor.supervisorHämäläinen, Raimo P., Prof.
dc.date.accessioned2012-08-31T07:43:45Z
dc.date.available2012-08-31T07:43:45Z
dc.date.issued2011
dc.description.abstractThe Dissertation explores novel perspectives related to time and conflict in the context of simulation metamodeling referring to auxiliary models utilized in simulation studies. The techniques innovated in the Dissertation offer new analysis capabilities that are beyond the scope of the existing metamodeling approaches. In the time perspective, dynamic Bayesian networks (DBNs) allow the probabilistic representation of the time evolution of discrete event simulation by describing the probability distribution of the simulation state as a function of time. They enable effective what-if analysis where the state of the simulation at a given time instant is fixed and the conditional probability distributions related to other time instants are updated revealing the conditional time evolution. The utilization of influence diagrams (IDs) as simulation metamodels extends the use of the DBNs into simulation based decision making and optimization. They are used in the comparison of decision alternatives by studying their consequences represented by the conditional time evolution of the simulation. For additional analyses, random variables representing simulation inputs can be included in both the DBNs and the IDs. In the conflict perspective, the Dissertation introduces the game theoretic approach to simulation metamodeling. In this approach, existing metamodeling techniques are applied to the simulation analysis of game settings representing conflict situations where multiple decision makers pursue their own objectives. Game theoretic metamodels are constructed based on simulation data and used to study the interaction between the optimal decisions of the decision makers determining their best responses to each others' decisions and the equilibrium solutions of the game. Therefore, the game theoretic approach extends simulation based decision making and optimization into multilateral settings. In addition to the capabilities related to time and conflict, the techniques introduced in the Dissertation are applicable for most of the other goals of simulation metamodeling, such as validation of simulation models. The utilization of the new techniques is illustrated with examples considering simulation of air combat. However, they can also be applied to simulation studies conducted with any stochastic or discrete event simulation model.en
dc.format.extentVerkkokirja (527 KB, 33 s.)
dc.format.mimetypeapplication/pdf
dc.identifier.isbn978-952-60-4268-8 (PDF)
dc.identifier.isbn978-952-60-4267-1 (printed)
dc.identifier.issn1799-4942
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/5024
dc.identifier.urnURN:ISBN:978-952-60-4268-8
dc.language.isoenen
dc.publisherAalto Universityen
dc.relation.haspart[Publication 1]: Jirka Poropudas and Kai Virtanen. 2011. Simulation metamodeling with dynamic Bayesian networks. European Journal of Operational Research, volume 214, number 3, pages 644-655. © 2011 Elsevier. By permission.en
dc.relation.haspart[Publication 2]: Jirka Poropudas and Kai Virtanen. 2010. Simulation metamodeling in continuous time using dynamic Bayesian networks. In: Björn Johansson, Sanjay Jain, Jairo Montoya-Torres, Joe Hugan, and Enver Yücesan (editors). Proceedings of the 2010 Winter Simulation Conference (WSC 2010). Baltimore, Maryland, USA. 5-8 December 2010. Pages 935-946. ISBN 978-1-4244-9864-2. © 2010 Institute of Electrical and Electronics Engineers (IEEE). By permission.en
dc.relation.haspart[Publication 3]: Jirka Poropudas and Kai Virtanen. 2007. Analyzing air combat simulation results with dynamic Bayesian networks. In: Shane G. Henderson, Bahar Biller, Ming-Hua Hsieh, John Shortle, Jeffrey D. Tew, and Russell R. Barton (editors). Proceedings of the 2007 Winter Simulation Conference (WSC 2007). Washington DC, USA. 9-12 December 2007. Pages 1370-1377. ISBN 978-1-4244-1306-5. © 2007 Institute of Electrical and Electronics Engineers (IEEE). By permission.en
dc.relation.haspart[Publication 4]: Jirka Poropudas and Kai Virtanen. 2009. Influence diagrams in analysis of discrete event simulation data. In: Manuel D. Rossetti, Raymond R. Hill, Björn Johansson, Ann Dunkin, and Ricki G. Ingalls (editors). Proceedings of the 2009 Winter Simulation Conference (WSC 2009). Austin, Texas, USA. 13-16 December 2009. Pages 696-708. ISBN 978-1-4244-5771-7. © 2009 Institute of Electrical and Electronics Engineers (IEEE). By permission.en
dc.relation.haspart[Publication 5]: Jirka Poropudas and Kai Virtanen. 2010. Game-theoretic validation and analysis of air combat simulation models. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, volume 40, number 5, pages 1057-1070. © 2010 Institute of Electrical and Electronics Engineers (IEEE). By permission.en
dc.relation.haspart[Publication 6]: Jouni Pousi, Jirka Poropudas, and Kai Virtanen. 2010. Game theoretic simulation metamodeling using stochastic kriging. In: Björn Johansson, Sanjay Jain, Jairo Montoya-Torres, Joe Hugan, and Enver Yücesan (editors). Proceedings of the 2010 Winter Simulation Conference (WSC 2010). Baltimore, Maryland, USA. 5-8 December 2010. Pages 1456-1467. ISBN 978-1-4244-9864-2. © 2010 Institute of Electrical and Electronics Engineers (IEEE). By permission.en
dc.relation.ispartofseriesAalto University publication series DOCTORAL DISSERTATIONS , 76/2011en
dc.subject.keywordsimulationen
dc.subject.keywordsimulation metamodelingen
dc.subject.keyworddiscrete event simulationen
dc.subject.keywordstochastic simulationen
dc.subject.keywordBayesian networksen
dc.subject.keywordinfluence diagramsen
dc.subject.keywordtechen
dc.subject.keywordgame theoryen
dc.titleBayesian networks, influence diagrams, and games in simulation metamodelingen
dc.typeG5 Artikkeliväitöskirjafi
dc.type.dcmitypetexten
dc.type.ontasotVäitöskirja (artikkeli)fi
dc.type.ontasotDoctoral dissertation (article-based)en
local.aalto.digiauthask
local.aalto.digifolderAalto_64992
Files
Original bundle
Now showing 1 - 7 of 7
No Thumbnail Available
Name:
isbn9789526042688.pdf
Size:
514.27 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
publication1.pdf
Size:
403.87 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
publication2.pdf
Size:
140.91 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
publication3.pdf
Size:
120.29 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
publication4.pdf
Size:
142.57 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
publication5.pdf
Size:
1.1 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
publication6.pdf
Size:
646.7 KB
Format:
Adobe Portable Document Format