Thermally insulating and electroactive cellular nanocellulose composite cryogels from hybrid nanofiber networks

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorHu, Yi
dc.contributor.authorCao, Meilian
dc.contributor.authorXu, Jianing
dc.contributor.authorLiu, Xueying
dc.contributor.authorLu, Jiqing
dc.contributor.authorYan, Jie
dc.contributor.authorHuan, Siqi
dc.contributor.authorHan, Guangping
dc.contributor.authorBai, Long
dc.contributor.authorCheng, Wanli
dc.contributor.authorRojas, Orlando J.
dc.contributor.departmentNortheast Forestry University
dc.contributor.departmentBio-based Colloids and Materials
dc.contributor.departmentDepartment of Bioproducts and Biosystemsen
dc.date.accessioned2022-12-22T09:43:44Z
dc.date.available2022-12-22T09:43:44Z
dc.date.issued2023-01-01
dc.description| openaire: EC/H2020/788489/EU//BioELCell
dc.description.abstractCellulose-based xerogels, cryogels and aerogels have been proposed to deliver the functions required by next-generation wearable electronics and energy materials. However, such systems often lack functionality and present limited mechanical resilience. Herein, we introduce a simple strategy to synthesize high-performance cryogels that combine cellulose and silica nanofibers that form ice-templated cellular architectures. Specifically, dual networks are produced by incorporating organic (cellulose) and inorganic (silica) nanofibers to form highly interconnected and vertically-aligned channels. Hence, ultralight structures (7.37 mg cm−3 in density and porosity of 99.37%) are produced with high mechanical strength, compressibility (dimensional recovery of up to 90%) and fatigue resistance (1000 loading cycles) along with low thermal conductivity (29.65 mW m−1K−1). Electrical responsiveness is supplemented by in situ polymerization of pyrrole, ensuing operation in a wide load range (0–18 kPa with sensitivity of 6.63 kPa−1 during > 1000 cycles). The obtained thermal insulating and electroactive materials are demonstrated for operation under extreme conditions (solvent and temperature). Overall, our dual network system provides a universal, multifunctional platform that can substitute state-of-the-art carbonized or carbon-based light-weight materials.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdf
dc.identifier.citationHu , Y , Cao , M , Xu , J , Liu , X , Lu , J , Yan , J , Huan , S , Han , G , Bai , L , Cheng , W & Rojas , O J 2023 , ' Thermally insulating and electroactive cellular nanocellulose composite cryogels from hybrid nanofiber networks ' , Chemical Engineering Journal , vol. 455 , 140638 . https://doi.org/10.1016/j.cej.2022.140638en
dc.identifier.doi10.1016/j.cej.2022.140638
dc.identifier.issn1385-8947
dc.identifier.otherPURE UUID: 44efb9ec-b352-4872-8422-68fbc9d7b363
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/44efb9ec-b352-4872-8422-68fbc9d7b363
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85143293538&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/101497750/CHEM_Hu_et_al_Thermally_insulating_2023_Chemical_Engineering_Journal.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/118489
dc.identifier.urnURN:NBN:fi:aalto-202212227227
dc.language.isoenen
dc.publisherElsevier Science
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/788489/EU//BioELCell
dc.relation.ispartofseriesChemical Engineering Journalen
dc.relation.ispartofseriesarticlenumber 140638en
dc.rightsopenAccessen
dc.subject.keywordCellulose nanofiber
dc.subject.keywordCryogels
dc.subject.keywordElectroactive materials
dc.subject.keywordSensors
dc.subject.keywordSuperelasticity
dc.subject.keywordThermal insulator
dc.titleThermally insulating and electroactive cellular nanocellulose composite cryogels from hybrid nanofiber networksen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
Files