Thermally insulating and electroactive cellular nanocellulose composite cryogels from hybrid nanofiber networks
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Hu, Yi | en_US |
dc.contributor.author | Cao, Meilian | en_US |
dc.contributor.author | Xu, Jianing | en_US |
dc.contributor.author | Liu, Xueying | en_US |
dc.contributor.author | Lu, Jiqing | en_US |
dc.contributor.author | Yan, Jie | en_US |
dc.contributor.author | Huan, Siqi | en_US |
dc.contributor.author | Han, Guangping | en_US |
dc.contributor.author | Bai, Long | en_US |
dc.contributor.author | Cheng, Wanli | en_US |
dc.contributor.author | Rojas, Orlando J. | en_US |
dc.contributor.department | Department of Bioproducts and Biosystems | en |
dc.contributor.groupauthor | Bio-based Colloids and Materials | en |
dc.contributor.organization | Northeast Forestry University | en_US |
dc.date.accessioned | 2022-12-22T09:43:44Z | |
dc.date.available | 2022-12-22T09:43:44Z | |
dc.date.issued | 2023-01-01 | en_US |
dc.description | | openaire: EC/H2020/788489/EU//BioELCell | |
dc.description.abstract | Cellulose-based xerogels, cryogels and aerogels have been proposed to deliver the functions required by next-generation wearable electronics and energy materials. However, such systems often lack functionality and present limited mechanical resilience. Herein, we introduce a simple strategy to synthesize high-performance cryogels that combine cellulose and silica nanofibers that form ice-templated cellular architectures. Specifically, dual networks are produced by incorporating organic (cellulose) and inorganic (silica) nanofibers to form highly interconnected and vertically-aligned channels. Hence, ultralight structures (7.37 mg cm−3 in density and porosity of 99.37%) are produced with high mechanical strength, compressibility (dimensional recovery of up to 90%) and fatigue resistance (1000 loading cycles) along with low thermal conductivity (29.65 mW m−1K−1). Electrical responsiveness is supplemented by in situ polymerization of pyrrole, ensuing operation in a wide load range (0–18 kPa with sensitivity of 6.63 kPa−1 during > 1000 cycles). The obtained thermal insulating and electroactive materials are demonstrated for operation under extreme conditions (solvent and temperature). Overall, our dual network system provides a universal, multifunctional platform that can substitute state-of-the-art carbonized or carbon-based light-weight materials. | en |
dc.description.version | Peer reviewed | en |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Hu, Y, Cao, M, Xu, J, Liu, X, Lu, J, Yan, J, Huan, S, Han, G, Bai, L, Cheng, W & Rojas, O J 2023, ' Thermally insulating and electroactive cellular nanocellulose composite cryogels from hybrid nanofiber networks ', Chemical Engineering Journal, vol. 455, 140638 . https://doi.org/10.1016/j.cej.2022.140638 | en |
dc.identifier.doi | 10.1016/j.cej.2022.140638 | en_US |
dc.identifier.issn | 1385-8947 | |
dc.identifier.other | PURE UUID: 44efb9ec-b352-4872-8422-68fbc9d7b363 | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/44efb9ec-b352-4872-8422-68fbc9d7b363 | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85143293538&partnerID=8YFLogxK | en_US |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/101497750/CHEM_Hu_et_al_Thermally_insulating_2023_Chemical_Engineering_Journal.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/118489 | |
dc.identifier.urn | URN:NBN:fi:aalto-202212227227 | |
dc.language.iso | en | en |
dc.publisher | Elsevier Science | |
dc.relation | info:eu-repo/grantAgreement/EC/H2020/788489/EU//BioELCell | en_US |
dc.relation.ispartofseries | Chemical Engineering Journal | en |
dc.relation.ispartofseries | articlenumber 140638 | en |
dc.rights | openAccess | en |
dc.subject.keyword | Cellulose nanofiber | en_US |
dc.subject.keyword | Cryogels | en_US |
dc.subject.keyword | Electroactive materials | en_US |
dc.subject.keyword | Sensors | en_US |
dc.subject.keyword | Superelasticity | en_US |
dc.subject.keyword | Thermal insulator | en_US |
dc.title | Thermally insulating and electroactive cellular nanocellulose composite cryogels from hybrid nanofiber networks | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |