Thermally insulating and electroactive cellular nanocellulose composite cryogels from hybrid nanofiber networks

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorHu, Yien_US
dc.contributor.authorCao, Meilianen_US
dc.contributor.authorXu, Jianingen_US
dc.contributor.authorLiu, Xueyingen_US
dc.contributor.authorLu, Jiqingen_US
dc.contributor.authorYan, Jieen_US
dc.contributor.authorHuan, Siqien_US
dc.contributor.authorHan, Guangpingen_US
dc.contributor.authorBai, Longen_US
dc.contributor.authorCheng, Wanlien_US
dc.contributor.authorRojas, Orlando J.en_US
dc.contributor.departmentDepartment of Bioproducts and Biosystemsen
dc.contributor.groupauthorBio-based Colloids and Materialsen
dc.contributor.organizationNortheast Forestry Universityen_US
dc.date.accessioned2022-12-22T09:43:44Z
dc.date.available2022-12-22T09:43:44Z
dc.date.issued2023-01-01en_US
dc.description| openaire: EC/H2020/788489/EU//BioELCell
dc.description.abstractCellulose-based xerogels, cryogels and aerogels have been proposed to deliver the functions required by next-generation wearable electronics and energy materials. However, such systems often lack functionality and present limited mechanical resilience. Herein, we introduce a simple strategy to synthesize high-performance cryogels that combine cellulose and silica nanofibers that form ice-templated cellular architectures. Specifically, dual networks are produced by incorporating organic (cellulose) and inorganic (silica) nanofibers to form highly interconnected and vertically-aligned channels. Hence, ultralight structures (7.37 mg cm−3 in density and porosity of 99.37%) are produced with high mechanical strength, compressibility (dimensional recovery of up to 90%) and fatigue resistance (1000 loading cycles) along with low thermal conductivity (29.65 mW m−1K−1). Electrical responsiveness is supplemented by in situ polymerization of pyrrole, ensuing operation in a wide load range (0–18 kPa with sensitivity of 6.63 kPa−1 during > 1000 cycles). The obtained thermal insulating and electroactive materials are demonstrated for operation under extreme conditions (solvent and temperature). Overall, our dual network system provides a universal, multifunctional platform that can substitute state-of-the-art carbonized or carbon-based light-weight materials.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationHu, Y, Cao, M, Xu, J, Liu, X, Lu, J, Yan, J, Huan, S, Han, G, Bai, L, Cheng, W & Rojas, O J 2023, ' Thermally insulating and electroactive cellular nanocellulose composite cryogels from hybrid nanofiber networks ', Chemical Engineering Journal, vol. 455, 140638 . https://doi.org/10.1016/j.cej.2022.140638en
dc.identifier.doi10.1016/j.cej.2022.140638en_US
dc.identifier.issn1385-8947
dc.identifier.otherPURE UUID: 44efb9ec-b352-4872-8422-68fbc9d7b363en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/44efb9ec-b352-4872-8422-68fbc9d7b363en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85143293538&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/101497750/CHEM_Hu_et_al_Thermally_insulating_2023_Chemical_Engineering_Journal.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/118489
dc.identifier.urnURN:NBN:fi:aalto-202212227227
dc.language.isoenen
dc.publisherElsevier Science
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/788489/EU//BioELCellen_US
dc.relation.ispartofseriesChemical Engineering Journalen
dc.relation.ispartofseriesarticlenumber 140638en
dc.rightsopenAccessen
dc.subject.keywordCellulose nanofiberen_US
dc.subject.keywordCryogelsen_US
dc.subject.keywordElectroactive materialsen_US
dc.subject.keywordSensorsen_US
dc.subject.keywordSuperelasticityen_US
dc.subject.keywordThermal insulatoren_US
dc.titleThermally insulating and electroactive cellular nanocellulose composite cryogels from hybrid nanofiber networksen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
Files