Fermi-polaron-like effects in a one-dimensional (1D) optical lattice
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
11
Series
New Journal of Physics, Volume 12, pp. 1-11
Abstract
We study a highly imbalanced Fermi gas in a one-dimensional (1D) optical lattice from the polaronic point of view. The time-evolving block decimation algorithm is used to calculate the ground state and dynamics of the system. We find polaronic behaviour qualitatively similar to that in the recent experiment by Schirotzek et al (2009 Phys. Rev. Lett. 102 230402), where radio-frequency (rf) spectroscopy was used to observe polarons in 3D space. In the weakly interacting limit, our exact results are in excellent agreement with a polaron ansatz, and in the strongly interacting limit, the results match with an approximative solution of the Bethe ansatz (BA), suggesting crossover from a quasiparticle to a charge-density excitation regime.Description
Keywords
Other note
Citation
Leskinen, M J, Nummi, O H T, Massel, F & Törmä, P 2010, 'Fermi-polaron-like effects in a one-dimensional (1D) optical lattice', New Journal of Physics, vol. 12, 073044, pp. 1-11. https://doi.org/10.1088/1367-2630/12/7/073044